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ABSTRACT 
 
 
 

In the near future advances in mechanical and electrical engineering will enable 

the production of a wide variety of relatively low cost robotic vehicles. This thesis 

investigates the behavior of swarms of military robots acting autonomously. The Multi-

Agent Robot Swarm Simulation (MARSS) was developed for modeling the behavior of 

swarms of military robots. MARSS contains state, sensing, and behavioral model 

building tools that allow a range of complex entities and interactions to be represented. It 

is a model-building tool that draws theory and ideas from agent-based simulation, 

discrete event simulation, traditional operations research, search theory, swarm theory, 

and experimental design.  MARSS enables analysts to explore the effect of individual 

behavioral factors on swarm performance. The performance response surface can be 

explored using designed experiments. A model was developed in MARSS to investigate 

the effects of increasing behavioral complexity for a search scenario involving a swarm 

of Micro Air Vehicles (MAV’s) searching for mobile tanks in a region. Agreement 

between theoretical and simulated search scenarios for simple searchers was found. The 

effect of increased MAV sensory and behavioral capability was demonstrated to be 

important. Little improvement was observed in swarm performance with these 

capabilities, however agent performance was adversely affected by reacting to increased 

knowledge in the wrong way. The utility of MARSS for conducting this type of analysis 

was demonstrated. 
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EXECUTIVE SUMMARY 
 
 
 

In the near future advances in mechanical and electrical engineering will enable 

the production of a wide variety of relatively low cost robotic vehicles. These vehicles 

will be physically capable of performing many military tasks in all spheres of the 

battlespace. Most current and planned military robotic vehicles involve a single person 

controlling many vehicles. When the battlespace has thousands of robots this will become 

impractical. Humans will instead interact with groups of robots. Individual robots within 

the group will act autonomously to achieve a common goal. These groups of robots are 

known as swarms.  

Modeling can help determine important behavioral and sub-system design 

considerations. Analytical models do not have the ability to answer the most pressing 

issues, such as how an individual robot should behave and how they should interact with 

each other in order to produce a desired swarm goal. Simulation can help answer these 

questions; in particular, agent-based simulation has constructs for representing 

knowledge, behavior, and interactions. The representation of these aspects of a swarming 

robot system is vital to understand the system as a whole.  

The primary aim of the work reported in this thesis was to develop, implement, 

and test a model for investigating the behavior of swarms of robots. A simulation tool 

called the Multi-Agent Robot Swarm Simulation (MARSS) was developed. MARSS is a 

sophisticated simulation model-building tool that can be used by analysts to understand 

the contribution that individual behavioral characteristics make to group performance.  

The modeling methodology described in this thesis uses ideas and technologies 

from agent-based simulation, discreet-event simulation, stochastic models, swarming 

theory, search theory, design of experiments, and statistics. No proper subset of these 

technologies is adequate to address the modeling questions.  

The modeling of a robot swarm scenario in MARSS starts with defining the 

problem and understanding the system that is to be studied. The sensing process in 
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MARSS models agent interaction. The aim of the sensing model in MARSS is to transfer 

information about one agent’s state to another. It consists of modeling the physical 

process involved with transferring energy through the environment.  

The behavioral process in MARSS models agents’ actions. Factors control the 

operations of the behavioral function. The actions of many agents produce an emergent 

group behavior. This behavior is measured and recorded, together with the factors that 

produce that response. Experiments are designed to get a good spread of factor levels 

over the response surface. Statistics, in particular regression trees, are then used to 

understand what factors contributed to the response.  

This modeling method was tested on a search scenario involving Micro Air 

Vehicles (MAV’s). The results from basic MAV search scenarios implemented in 

MARSS were validated against analytical results for exhaustive and random search for a 

moving target. In both cases the results from MARSS matched those determined 

analytically.  

More complex scenarios searchers were created where MAV’s were given a more 

involved behavior, allowing them to react to observed targets, each other, and targets 

observed by fellow searchers. The searchers were conducting a random search with these 

modifications. Summing the components of acceleration in different directions controlled 

movement. It was found that by using the movement mechanism involving accelerating 

towards the current way point that search performance improved over the pure random 

search by at least 10% regardless of the configuration of the targets.  

When targets were moving in a group the most important factor affecting good 

search performance was acceleration away from an observed target. This was an artificial 

result based on the configuration of the sensor. Acceleration away from other searchers, 

and towards targets observed by other agents was found to have only a slight affect on 

performance.  

The research question addressed for the MAV scenario was “How should 

individual agents behave to produce a desired swarm behavior?” This question was 
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answered for the MAV scenario by determining what factor levels contribute to good 

search performance. 

Insight was provided into how the level of swarm performance is dependant on 

the level of communication by investigating the effects of being able to react to fellow 

searchers, and to targets found by fellow searchers. The results of this thesis suggest that 

the sharing of this information does not have a marked impact on the best swarm 

performance observed. A more interesting result is that reacting to that information in the 

wrong way can drastically reduce swarm performance.  

The difference in swarm performance between Multi-Agent (distributed) and 

Single-Agent (centralized) swarm control was addressed by comparing the exhaustive 

search results to the distributed control of the complex scenarios. When targets were 

moving in a group, distributed control appeared to be much better; this result is somewhat 

artificial due to the sensor configuration. When targets were spread over the search area, 

distributed control did not achieve as well as central control, however the increased in 

performance observed does suggest that this may be possible. 

Implementing and testing the MARSS model achieved the primary aim of this 

work. The utility of MARSS for conducting analysis of the behavior of robot swarms was 

demonstrated. Researchers that are considering investigating groups of robots have the 

MARSS tool available. 

MARSS is available for download from 

http://diana.or.nps.navy.mil/~ajdickie/marss.  
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I. INTRODUCTION  

A. BACKGROUND  

 

1. Robots on the Future Battlefield 

The practical projection of military power involves identification of targets and 

the delivery of energy to them. Achieving this delivery often requires placing military 

personnel at risk. One of the main aims of pursuing military technology is to reduce this 

risk, while retaining or enhancing the capability to identify and destroy targets. The 

development of robotic vehicles to further reduce human risk is a continuation of this 

work. 

In the near future advances in mechanical and electrical engineering will enable 

the production of a wide variety of relatively low cost robotic vehicles. These vehicles 

will be physically capable of performing many military tasks in all spheres of the 

battlespace. The vehicles will have many capabilities. They will be able to navigate and 

move without direct humans control, process sensory information and use this to control 

actions, and perform any task that a machine can perform today. Indeed, many military 

robotic vehicles currently exist or are in the latter stages of development. 

 

2. Towards Robot Swarms 

Most current and planned military robotic vehicles involve a human in the 

decision making cycle while the vehicle is in operation. Indeed, in many cases there are 

teams of humans controlling only one robot. This ratio of robots to human controllers 

will be impractical when there are tens of thousands, or even hundreds of thousands, of 

robots operating in a future battlespace.  

Direct human control also requires some communication link between the human 

and the vehicle. In many cases, particularly for small robotic vehicles, the size of the 

vehicle prohibits the allocation of weight, volume and power resources to a 

communication subsystem that has the capability to link to a central controller.  



2 

Both of these issues can be addressed by grouping robots together. Robots with 

common goals could be grouped into autonomous swarms. Humans would control the 

allocation of tasks to the swarm and then the swarm would act autonomously. Individual 

vehicles control their own actions in order to produce a desired group outcome. Humans 

would interact with the swarm, rather than individual vehicles.  

A swarm of robots could self-organize, provided there is sufficient local 

communications capability for inter robot communication. Some current robot research 

involves giving individual vehicles behaviors so that they can navigate their environment 

and act autonomously. With this capability the prospect of an autonomous swarm is a 

reality.  

 

3. Modeling Swarms of Robots 

The development of robots capable of acting in a swarm could be very costly. To 

build and test tens, hundreds, or even thousands, of robots consumes scarce resources. It 

is important to conduct as much development as possible without actually building 

devices. Modeling can help determine design parameters in a number of areas.  

The physical characteristics of a potential vehicle can be modeled. The cost in 

weight, volume and power resources for each subsystem can be used in conjunction with 

the payoff that each subsystem gives. This may help determine an optimum configuration 

for an individual robot. Behavior or tactics may be modeled to help determine how 

individuals should act in order to produce a desired group outcome. Complex models 

may take into account both physical characteristics and behavior of individuals in order 

to produce an overall system design.  

 

4. Simulation as a Modeling Tool 

Analytical models can be used to help answer some questions regarding swarms 

of robots. For example, optimization models may be used to determine the best balance 

between subsystems. Stochastic models may be used to analyze some aspect of a search 

tactic. A high level of abstraction and aggregation characterizes these analytical models. 
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 Simulation is the only tool currently available that allows researchers to model the 

complex systems faced in the design of robots to operate in swarms. A characteristic of 

autonomous operation is the complexity associated with robot sensing, knowledge, and 

behavior systems. Analytic models cannot be used to provide insight to basic questions in 

this regard. The cheaply available power of current computing technologies allows 

simulation to provide insight into many such problems.  

 

5. Agent-Based Simulation 

 Agent-based simulation concerns using simulation to model entities with intent. 

A suite of reasonably well-developed architectures exists for modeling sensing, 

knowledge and behavior. In most agent-based simulations entities control their own 

actions. Encapsulation of entity knowledge and actions about the world is typical.  

Agent-based simulation is the only tool for modeling many kinds of interactions 

involving autonomous robots. Giving individual entities behavior rules results in 

individual actions. By making these rules dependant on the state of other entities, or some 

group goal, an overall swarm performance become evident, or emerges.  

Although there exists a well-developed architecture and theory for using agent-

based simulation, there is no tool to answer questions about a system involving swarms 

of robots.  

 

B. AIM 

The aim of this research reported in this thesis is to develop, implement, and test a 

model for investigating the behavior of swarms of robots.  

 

C. APPROACH 

A model was developed and implemented as the Multi-Agent Robot Swarm 

Simulation (MARSS). MARSS was designed to have the following characteristics: 

• Have a broad application to a range of different entities, environments, 
and scenarios. 



4 

• It should be quick and easy to implement a new scenario. 

• Data collection and experimentation should be automated. 

• The implementation should be deployable.  

MARSS was then tested using a Micro Air Vehicle (MAV) search scenario. The 

objective for the MAV scenario is to gain insight in to the behavioral factors controlling 

individuals that are important to the success of a swarm. Analysis of the MAV scenario 

provided useful information regarding the important behavioral factors that contribute to 

group performance. The research reported here involves modeling a swarm of MAV’s to 

optimize group performance. 

 

D. RESEARCH QUESTIONS 

Of general interest are the techniques used to model and understand robot 

swarms. The research question is “What techniques can be used to effectively model 

robot swarms?”. The general suitability of the modeling methodology implemented in 

MARSS will be addressed. 

The research question addressed for the MAV scenario is “How should individual 

agents behave to produce a desired swarm behavior?” This question is very difficult to 

answer in general terms for the range of scenarios it encompasses. Insight can be 

provided into the broad question by quantitatively answering the following for a number 

of specific scenarios: 

• How is the performance of the swarm dependent on the level of 
communication?  

• What is the difference in swarm performance between distributed and 
centralized swarm control? 

 
 

E. SCOPE 

 

1. General 

Much work with agent-based simulation has involved building agent models that 

accurately reflects some real agent. The aim of this work is different. The aim is to find 
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out what aspects of an individual agent’s behavior are important to achieving a group 

goal. Instead of trying to model behavior, robots behavioral capabilities are assumed. The 

aim is to find how a swarm of such robots should use these capabilities to meet a group 

goal. By modeling behavioral capabilities we can create behavior rather than modeling it. 

The subtle difference is that the only measure of how well a group of agents perform is 

not how accurately the created behavior represents some real behavior, but how well the 

swarm performs with the created behavior.  

Although MARSS was built to represent a broad range of scenarios, it was 

designed with some specific scenarios in mind. These included a MAV scenario where a 

swarm of MAV’s is searching for a group of tanks in an area, a mobile surface sea mine 

scenario where a swarm of mobile mines coordinate attacks on a ship, and a missile 

defense scenario where a swarm of anti-missile interceptors attempt to attack and destroy 

incoming threats. Although the MAV scenario was the only one of these implemented 

and analyzed in detail, the modeling methodology implemented in MARSS was designed 

with all in mind.  

 

2.  Model Inclusions 

Like all models MARSS is an abstraction of reality. Some aspects of reality are 

included in the model and others are not. The model has the capability to represent the 

following information: 

• Almost any conceivable entity that has a state and in some way interacts 
with other entities. 

• The transmission and sensing of information from one entity to the other. 
This includes the sensing of another entities state and the transmission of 
information deliberately (messages). 

• A wide range of complex entity behaviors. 

• The grouping of entities into swarms. 

• Entity objectives, both for individuals and groups. 

• A basic physical based model of movement.  
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3.  Model Exclusions 

MARSS does not explicitly include the ability to represent combat process. That 

is, the ability of one entity to inflict harm, damage, or attrition on another is not modeled. 

It could conceivably be included as part of the sensing process; however, the part of the 

model that represents this process is not designed for that purpose.  

Terrain or other obstacles to movement and the explicit transmission of messages 

are not represented. While the model has the capability to be expanded to represent these 

aspects they are not essential for the range of scenarios that the model was designed for.  

 

F. PREVIOUS WORK 

 

1. Swarming Theory  

Swarming is defined in different ways by different disciplines. The word 

originated in the biological field from the Old English swearm, meaning group of bees. 

Today a swarm to biologists is the collective term given to a group of insects or similar 

small animals.  

Researchers in the Command, Control Communication, and Intelligence (C3I) 

area use swarming to describe a way of war fighting [Arquilla and Ronfeldt 2000]. For 

many years military theorists have made attempts to characterize the way wars are 

fought. They describe the tactics and doctrine of past engagements in order to gain some 

insight about how military forces should best operate in the future. Recently swarming 

has been described as one of four fundamental forms of engagement. The others are the 

chaotic melee, brute-force massing, and maneuver.  

The chaotic melee was the first form of warfare to emerge. It is a primeval state of 

war with no discernible organization. Ancient clashes between unorganized forces and 

aerial dogfights in both world wars are examples. As communication improved, massing 

enabled centralized commanders to direct large bodies of troops. Massing is seen on the 

linear battlefields of many wars such as the trench warfare in Europe during WWI. 

Maneuver warfare is that which most modern forces attempt to employ today. It involves 
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engaging in conflict only when the conditions are favorable. Forces are maneuvered in 

such a way that they are massed at a decisive point. Operation Desert Storm is a modern 

example of maneuver warfare.  

Swarming as a way of war fighting has been characterized as “a seemingly 

amorphous, but deliberately structured, coordinated, strategic way to strike from all 

directions, by means of a sustainable pulsing of force and/or fire”. [Arquilla and Ronfeldt 

2000] Swarming involves distributing autonomous, or semi-autonomous forces about the 

battlefield that come together, either in force or by fire, to strike at targets before 

dissolving and redistributing themselves. Many examples of swarming can be found 

throughout history and in nature. With the recent advent of network centric warfare has it 

emerged as a contender to maneuver warfare for modern military forces.   

Some researchers that use multi-agent systems describe yet another type of 

swarming. The word swarm is used to describe a collection of agents that are 

homogeneous in physical characteristics and behavioral properties.  

For the purposes of this thesis the word swarm encompasses many of these ideas. 

It will be used to describe a group of military robotic vehicles that are operating in the 

same battle space and have a common mission. The swarm may or may not be 

homogeneous in behavioral characteristics; however physical characteristics will at least 

be similar, if not the same. Individual robots may move in a pack or may be 

geographically dispersed. In general members of a swarm will have some form of direct 

or indirect communication with each other. The key to a group of agents being a swarm is 

a common goal that the group performance can be measured against. 

 

2. Multi-Agent Systems 

Multi-agent systems abound in many aspects of modern computing [FERB99]. 

The use of multi-agent systems for modeling and simulation has become common.  Some 

of the more commonly cited examples include the following: 

• The El Farol Problem – Using agents to model a bounded decision making 
process [Arthur 1994] 
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• BOIDS – A distributed behavioral model of flocks of birds [Reynolds 
1987]. 

• ISAAC – Irreducible Semi-Autonomous Adaptive Combat model 
[Illachinski 1997]. 

Recent work from the Modeling Virtual Environments and Simulation (MOVES) 

Institute at the Naval Postgraduate School has focused on creating agent architectures that 

enable complex behaviors to emerge [Hiles et al 2001]. This work has led to techniques 

for agent construction including a social and organization relationship management 

engine, a composite agent architecture, an agent goal apparatus, a structure for capturing 

and applying procedural knowledge (tickets), and the ability to bring these technologies 

to bear at the right time and in the proper context using connectors. The work described 

in this report borrows much of the terminology and agent architecture from that 

conducted in the MOVES Institute. In particular the concept of an inner environment is 

used here. This is a construct that contains an agent’s knowledge of itself and the world. 

The use of tickets and connectors to create behavior is adapted for work with MARSS.  

Project Albert is an initiative of the Marine Corps Combat Development 

Command. It is an effort to provide quantitative answers to decisions methods using the 

“new sciences” [Horne and Leonardi 2001]. Part of the work involves the use of agent-

based simulation to provide insight into particular problems. This focus on using agent-

based simulation for detailed analysis by Project Albert is rare amongst the range of 

agent-based simulations developed over the past two decades.   

 

3. Operations Research Techniques 

Many of the techniques developed for use by operations research analysts have 

been incorporated in the MARSS modeling methodology. Discrete event simulation is 

used to form the basis for the program flow of MARSS. The discrete event simulation 

methodology helps to remove some of the anomalies associated with time step 

simulation, and to improve program execution times. Simkit is a discrete event modeling 

Application Programming Interface (API) developed to assist in the creation of discrete 

event simulations [Buss 2001]. By using aspects of the Simkit model, techniques created 

in its development were inherited by MARSS. 



9 

Established principles from design of experiments provide robust methods for the 

treatment of the simulation results [Box, Hunter and Hunter 1978]. More recently work 

has continued on experimental designs for simulations with many input factors. Evidence 

of the application of these techniques to agent-based simulation is limited. Project Albert 

is however undertaking some work in this area.  

Search Theory has developed analytical models for conducting optimal search for 

targets, particularly in the military arena [Wagner, Mylander and Sanders 1999]. Of 

particular interest to scenarios developed for MARSS is the theory underlying exhaustive 

and exponential search for moving targets. Related to this is the development of 

stochastic models for search scenarios.  

 

4.  Relation To This Work 

The research reported in this thesis is not an extension of any one particular area. 

Rather it draws tools, techniques, technologies and ideas from many disciplines together 

to create a modeling process for investigating swarms of military robots. Swarming 

theory provides the concepts and ideas that form the basis. Multi-agent and discrete event 

simulation provide the tools and techniques for modeling entities, behavior and 

interactions. Search theory provides the analytic underpinning for the processes that are 

investigated. Design of experiments provides the experimental procedures that allow the 

model to provide useful quantitative information. Finally, statistical data mining tools 

such as regression trees are used to analyze the simulation output. These techniques are 

bought together to create MARSS. 

It is appropriate to distinguish between the approach taken by many researchers 

using agent-based systems and the approach this thesis reports. For a variety of reasons 

many researchers, including some of those mentioned above, attempt to build models that 

mimic an entity or group behavior. This may be to understand the factors that influence 

that behavior, to replicate it in some interactive simulation, or to study entity behavior in 

a different context. The task of creating such models is particularly difficult and 

important for a range of reasons. The work reported in this thesis does not attempt to take 

on this task. Rather the measure of the fitness of a created individual behavior is solely 
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dependant on how it performs in a group context. There is no preconceived notion of 

what that behavior should look like; only its performance matters.  

 

G.  DEFINITIONS 

 

1. MARSS 

MARSS is the term given to the Multi-Agent Swarm Simulation System. This 

tool is a Java implementation of the modeling methodology described in this report. It 

was developed in conjunction with the methodology, however should not be seen as the 

only, or best, way to implement the model.  

MARSS contains state, sensing, and behavioral model building tools that allow a 

wide range of complex entities and interactions to be represented. It is a model-building 

tool that draws theory and ideas from agent-based simulation, discrete event simulation, 

traditional operations research, search theory, swarm theory, and experimental design.  

 

2. Agent 

An agent is a general term given to an entity with intent. For this model agents are 

mobile entities that sense and react to their environment. The term “agent” is used to 

describe the decision-making entity. In this sense it would be possible for a swarm of 

robotic vehicles to be controlled by a single agent (a central controller). This research 

will focus on the situation where each robotic vehicle acts as an individual agent and 

makes its own decisions, albeit within mission parameters. Hence the term ”multi-agent 

swarm” arises 

 

3. Swarm 

A swarm is defined as a group of agents with a common goal. This definition 

draws ideas of swarming from those presented earlier in this chapter. While this 

definition is used throughout this thesis swarming should be thought of as a concept 

rather than something that is precisely defined.  
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4. MAV 

A Micro Air Vehicle (MAV) is an ultra small aircraft, no more than 15 cm in any 

dimension. Such vehicles are being developed by the Defense Advanced Research 

Projects Agency (DARPA) to perform useful military missions. The figure below is a 

picture of a prototype MAV built by AeroEnvironment for DARPA. [Grasmeyer and 

Keennen, 2000]. This particular vehicle flew for 30 min transmitting a real time color 

video image the entire time.  

 
Figure 1.   AeroEnvironments “Black Widow”  Micro Air Vehicle 
 

 

H. THESIS ORGANIZATION  

 

1. General 

The chapters of the thesis are designed so they can mostly be read independently. 

The remainder of this section describes briefly what is reported in each chapter.  
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2. Modeling Mobile Robots In A Swarm 

A general description of the agent model is presented. The relationship between 

swarming theory as it applies to military operations and the behavior of a group of robots 

with a common goal is explored. More detail on the theory of Multi-Agent systems is 

then presented as it relates to robots.  

 

3. The Sensing Model 

 Development of MARSS involved creating a complex sensing sub-model. This 

chapter describes the sensing sub-model in detail including the emission process. The 

reasons for the complex sensing process and comment on its limitations are reported.  

 

4.  Creating Robot Behavior 

This chapter describes how the behavioral process is modeled. It emphasizes that 

the aim of this model is not to mimic a behavior but to create one. A description is given 

of how an agent’s sensed view of the world is mapped to things that it can control.  

 

5. MARSS Design And Features 

The program design and programming principles of MARSS are presented and a 

description of the features available to the user is given. Brief comments on how MARSS 

can be used to help design robot behaviors are made; they are followed by suggestions 

for other possible uses. Possible future enhancements are explored.  

 

6. A MAV Scenario 

This chapter reports how MARSS was used to explore the important factors 

governing the behavior of a swarm of Micro Air Vehicles searching for tanks. A detailed 

description of the scenario and how it is implemented in MARSS is described.  
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7. MAV Scenario Results and Analysis 

The experimental design, data collection, and analysis are reported. A comparison 

of the experimental results to theoretical performance is made for both exhaustive and 

random search. The development of more complex MAV behaviors is described and the 

results with such experiments analyzed.  

 

8. Appendices 

Two appendices are included. The first contains a pictorial description of the 

MARSS tool and should be read in conjunction with the MARSS design chapter. The 

second contains a detailed description of the search algorithm used to ensure uniform 

random coverage of a rectangular search area. 
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II. MODELING MOBILE ROBOTS IN A SWARM 

A. INTRODUCTION 

The first question faced in developing a model to represent mobile robots in a 

swarm is “What do we want the model to tell us?” This is relatively easy for a specific 

scenario; however MARSS should be applicable to many robot swarm scenarios. The 

answer for MARSS is that it should help provide insight into the important factors that 

control robot behavior. The next question is what kind of model should be built. 

A range of methods available to Operations Research analysts was considered as 

candidates to help understand robot behaviors. For a variety of reasons simulation 

appeared to hold the most promise for achieving the stated aim. Agent-based simulation 

methodologies and ideas were most appropriate to answer the questions posed. An agent-

based architecture was then developed.  

The remainder of this chapter is devoted to describing a number of aspects of the 

model that has been built. Central to this is what kind of swarming is being modeled. The 

remaining sections then describe how individual agents are modeled in this agent-based 

simulation.  

 

B. SWARM THEORY APPLIED TO ROBOTS 

 The definition of swarming by researchers in the C3I area is closest to that used 

here to describe a robot swarm. That definition is mostly concerned with swarming as a 

method of engaging in combat. With regard to robot swarming the MARSS model is 

designed for analyzing other military operations, as surveillance and reconnaissance by a 

swarm. In these operations we are interested in a swarm of robots working together to 

achieve a common goal. The swarming is not necessarily geographic. In many cases the 

swarm behavior is a function of cooperation and distributed coordinated effort. 

Recent advances in robotics, artificial intelligence, sensing, and communications 

promise to deliver capable low cost robotic weapon systems in the near future. Most 

robots will use swarm tactics in all spheres of the future battlespace. Swarms of crawling 

robots may be used to clear landing zones [WEBER 1995]. Robotic high-speed mobile 
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sea mines could effectively prevent areas of the sea from being used, or could even 

swarm to attack large vessels. Swarms of small aircraft with small warheads may be used 

to provide point missile defense, massing together to form a cloud in front of an incoming 

threat. The possibilities are only limited by imagination. Science fiction will gradually 

become a reality as technologies enable these ideas. In many cases, especially for air and 

sea surface craft, the technologies are already in place and relatively small investments 

will result in very capable weapon systems.  

 

C. AGENT STATE 

The description of an agent at any point in time is its state. The crux of what any 

simulation does is to vary the state over some domain using a function. In general these 

functions are too complex to be understood using analytical techniques. Although agent-

based and other simulations can vary the state of an agent over domains other than time, 

for this model the properties of an agent that represent its state are only varied with time.  

Not all properties of an agent need to be represented explicitly by its state. Indeed 

if we were to model every aspect of a robot we would need to capture the position and 

energy of every subatomic particle that made up the robots matter. Even with the unlikely 

assumption that we could somehow capture that information in the foreseeable future, to 

represent it in a way that we could use for simulation is well beyond the capabilities of 

any current or envisaged computing machine. To overcome this limitation the simulation 

designer must simplify the representation of the agent. In general the designer should 

choose properties to represent an agent that are believed to have some impact on the 

outcome being studied. Simple properties such as location, size, velocity, health, etc. are 

used to describe the state of agents in the MARSS model.  

The concept of implied state allows us to simplify the model even further. Not all 

properties that are used by the simulation need be represented if one or more of these 

properties are functions of some other state variables. Such variables make up the implied 

state of an agent. In a similar vein some properties of an agent may be combined to form 

some artificial property. The health of a robot is an example. This property may be used 
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to represent the remaining time a robot can be used (battery life) or to represent some 

other property such as the reduction in physical capability due to battle damage. 

In MARSS every aspect of an agent’s state is modeled by either a vector or scalar 

property. Three-dimensional vectors are used to model properties such location, 

orientation, velocity, and acceleration. Scalars are used to model things like size, health, 

and age. Linked to each property is a name. To determine the state of an agent at any 

point in time there is a mapping from the property name to the value of that property.  

Not all of these properties will vary over time. Some are constant for the duration 

of the simulations; others are modeled as properties so the agent can represent them in its 

inner environment. Those properties that change over time are distinguished in the 

MARSS as “changeable” properties. In discrete event simulation these changeable 

properties are known as state variables. Properties that are not changeable would be 

known as parameters.  

Changeable properties may be unbounded or may be given bounds. For example 

there may be a limit on an agent’s location property to ensure it does not go below 

ground level, or on a velocity property to ensure it does not exceed a particular value. The 

types of bounds that can be given to a scalar property are an upper and lower limit. For 

vector properties there may be an upper and lower limit on the vectors magnitude (for a 

velocity for example), or upper and lower limits on each of the three dimensions (for a 

location for example).   

In MARSS there may be many forces working to affect a changeable property. 

Property change suggestions are made by the behavioral sub-model about the new value 

of the property. Each suggestion has a weight associated with it. The properties manage 

these suggested changes by simply performing a weighted addition of them and applying 

this suggestion to change the property. Before the property is finally changed the summed 

suggestion is restricted by the set bounds. The restricted suggestion is then applied, and 

the agent now has a new state.  
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D. THE INNER ENVIRONMENT 

In the real world humans and other decision-making animals perceive the world 

around them and act on this representation of the world. Part of this perception is a 

perception of their own state. Together this perception of the external world and their 

own state is known as the inner environment. The outer environment is the world external 

to decision-making animal that it is making perceptions about. This model of the 

perception process is used in MARSS.  

The main reason for distinguishing the information in the world between inner 

and outer environments is to encapsulate that information that an agent’s behavior may 

be based. Simulations without this or a related structure may have a hard time keeping 

track of what an agent “knows” and can therefore base behavioral decisions on.  

The inner environment is comprised of two distinct parts, the perception of self, 

and the perception of the outer environment. These parts are distinct due to the origin of 

the information. In the MARSS model there is a separation between these two parts of the 

inner environment as they are stored slightly differently in the agent model. However, an 

agent’s behavioral mechanism makes no distinction. 

An agent’s perception of its own state is the first part of the inner environment. In 

some models it may be assumed that this information is available for the agent’s 

decision-making process, however this is not always the case. In some cases an agent 

may know nothing about its own state and in other cases the information may be filtered 

in some way. For example, if an agent can somehow perceive its own location its 

representation of that property may be filtered or perturbed in some way to induce an 

effect of uncertainty in a location sensing system being modeled. It is possible that an 

agent’s behavior be based on nothing more than information about the external 

environment it receives. In the MARSS model presented here it is assumed that agents 

have perfect information on those aspects of their state that are used for the decision 

making process.  

The other part of the inner environment is the information that has been gathered 

by an agent’s sensors from the outer environment. This information comes in two forms, 

information about other agents, and information about non-agent entities in the 
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environment such as terrain. The latter is not explicitly represented in the MARSS model, 

however the concept of stationary entities with no behavior can be used to represent 

objects that other agents can sense. The lack of an explicit representation of non-entities 

in the environment was a deliberate design decision due to the complexity of such a 

model.  

The information that one agent can get about another agent consists only of the 

sensed agent’s state. The creation of this part of the inner environment involves the 

transfer of information about one agent’s state to another. One agent gets to know 

something about the properties of another. Similar to the information about an agent’s 

own state, this information may be inaccurate in some way depending on the process 

being modeled. For the MARSS model the sensing process always transfers information 

about a particular property with complete accuracy. There is an entire chapter of this 

work devoted to the operation of the sensing model and it will not be discussed further in 

this section.  

A depiction of the inner environment is shown in the following figure. Here we 

can see the two sections of the inner environment that make up an agent’s inner 

environment.  

Memory

Sensed
Properties

Own Properties

Inner Environment

Emitters

Sensors
-Tickets
-Connectors

Behavior

MARSS Agents

Scalar Property

Vector Property

 
Figure 2.   Graphical Depiction Of The Inner Environment 
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Note also in the above figure the depiction of memory. As both an agent’s state 

and its sensed representation of the outer world change over time the inner environment 

also changes. In some agent systems it is appropriate to retain a history of information 

contained in the inner environment. Such a history can be described as an agent’s 

memory. The other part of the memory that may be stored is some information about how 

an agent has behaved. A memory has not been implemented for any of the behaviors that 

have been constructed in MARSS, however it would be relatively easy to implement an 

agent with a memory.  

The above figure also has areas that represent an agent’s sensing system and 

behavior. The operation of the sensors and emitters depicted is covered in the next 

chapter, and behavior in the chapter following that.  
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III. THE SENSING MODEL 

A. GENERAL 

This chapter describes how the sensing process that creates an agent’s perception 

of the outer environment operates in the MARSS model. The first part of the inner 

environment, that part formed from an agent’s own properties, is covered in the previous 

chapter. The task of the sensing process is to take information about the outer 

environment, process it in a logical manner, and pass it to an agent for use in its 

behavioral system. In determining how to model this sensing process we must first decide 

what the information in the outer environment actually is, and where it resides.  

 

B. CONSTRUCTING THE INNER ENVIRONMENT 

The information external to an agent can be characterized in two ways; that 

information about other agents’ state, and that information about non-agent state 

parameters of the model. An example of the latter is terrain and obstacles, which are not 

represented in MARSS. Information about other agents’ state includes the current value 

of the other agents’ properties such as its location or velocity.  

 The entire state of the simulation is described as the sum of states of all of the 

entities. The information external to an individual agent that has to be processed by the 

sensing model is the state of all of the other agents in the model. It would be possible to 

create a simulation where each agent could access every bit of information about the state 

of every other agent, however there are very few situations where this would accurately 

model a physical process. In the MARSS modeling process the only way one agent can 

gain information another agent is via the sensing process.  

The task of the sensing model is to process information about an agent’s state and 

pass this to other agents. To create a model for this process there are a number of other 

constraints that must be observed. One of the driving factors was to create a model where 

the information contained in both parts of the inner environment is indistinguishable to 

the agent. The information in the inner environment from the sensing process is stored as 

either vector or scalar values with a string representing its name; just like an agent’s own 
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properties. Another factor considered in creating the MARSS model is that in many cases 

only a limited subset of information sensed by an agent will actually be used to control its 

behavior.  

The sensing process is modeling sensors onboard robots and any other entities 

being represented. In creating a model to represent this process ideas were drawn from 

the physical world. In the physical world entities are not directly sensed by other entities, 

rather some signal is emitted, transferred through space, and received and processed by 

other entities. A description of this can be divided into the emission and sensing 

processes. The following sections discuss these in more detail. 

 

C. THE EMISSION PROCESS 

 

1. Bands 

In the physical world energy is constantly being emitted by all entities. In most 

cases these emissions occur regardless of whether there is something capable of sensing 

and processing the emitted signal or not. These signals may electromagnetic, acoustic or 

chemical. We can characterize the signals by the kinds of sensors that can detect them; 

radio, visual and radar are examples. These characterizations can be thought of as 

channels through which information is passed. These channels bands are referred to as 

bands. This term is borrowed from the electromagnetic spectrum. A MARSS band may 

be used to model any information channel however.   

One of the characteristics of signals in the real world is that at any point in space 

they have a strength (or intensity). The signal strength is generally greatest at the origin 

of the signal, and then degrades with distance. This attenuation function is specific to 

each band. Some signals attenuate linearly, or exponentially for example. Others may 

have more complex attenuation functions such as that attributed to the transmission of 

acoustic signals underwater. By specifying a band for a signal its degradation function is 

assumed. In MARSS there is no built in restriction on how many bands may be used for a 

particular scenario. In practice it is wise to limit this number to only those bands that are 

required for computational efficiency.  



23 

It is possible to have a band where a signal is not attenuated by distance. Such a 

process can be used in MARSS to represent a signaling process where there is a 

requirement to transmit information globally.  

There are two main reasons for representing transmitted information in bands. 

The first is to model different attenuation functions. By doing so the strength of range of 

signals that depend on distance can be imitated. The second case for bands is to simplify 

the construction of sensors. Sensors that operate in a particular band need only consider 

signals in their particular band.  

 

2. Signal Types 

It has been previously stated that the type of information being transmitted are the 

properties of agents. A particular agent will generally not transmit a signal that contains 

all of its properties. Rather, signals will include a subset of its properties. An entity may 

have more than one kind of signal that is emitted. These groupings of properties into 

signals are known as signal types. An entity may have many signal types modeled. A 

signal type is a mapping from a signal type name to property names. Every entity has a 

signal type called “entity” that contains only one property, the entities location. Signal 

types can be thought of as how a particular entity can be observed as by other entities.  

A concrete example of the signal type concept can be given for a tank. Suppose a 

tank is modeled with properties such as location, velocity, size, make, team, unique 

identification and armament. Examples of signal types include “entity”- (location), “tank” 

- (location, make), “teamTank” - (location, make, team) and “teamTank(i)” - (location, 

make, team, unique identifier). In each of these examples the signal type name is 

followed by the properties that are mapped to that signal type. It is not necessary that 

signal types be ordered in any way where properties are added for greater resolution of a 

particular entity. For example another valid signal type for a tank may be 

“weaponSystem” – (location, unique identifier, armament). Note that in MARSS all of 

these properties are either vector or scalars. The modeling of a particular entity in 

MARSS requires the analyst to define the signal type/properties mapping for each entity.  
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Signal types allow for a measure of control over what information is being 

transmitted in the environment. A signal type architecture may be created to ensure that 

as the strength of the received signal increased the sensor gained more information about 

an entity being sensed. An example of this is the gradual increase in visual information 

that a human receives as we become closer to an object being sensed. 

 

3. Emitters and Emissions 

To facilitate the transmission of signals, entities have emitters. An entity may 

have zero or more emitters. Each emitter is designed to emit a particular kind of signal, 

an emission. Emissions are the carriers of information in the model. Each emission 

consists of four pieces of data: its originating entity, what band it is transmitted in, its 

initial strength, and its originating location. The role of entity’s emitter is to ensure that as 

the entity’s state changes its emissions also change. Signal strength units in the model are 

arbitrary. Any units can be used for any band as long as the model is consistent 

throughout. In fact, in many cases the units will just be arbitrary rather than some 

common physical measurement. What is important is the relative values of signal 

strengths.  

Emissions are created and destroyed only when required. This is not every time 

the state changes, rather the emissions parameters are updated in response to a change in 

state. The originating entity and band of an emission will never change. The initial 

strength of an emission may change if the agent’s state somehow controls it. These state 

changes may be under the agent’s control or may be a result of some other process. The 

main part of an emission that changes will be the emission location.  

An agent may have many emitters and may therefore be responsible for signals in 

many different bands at any point in time. Information about an agent’s signal type is not 

contained in an emission. Rather, a link to the originator is maintained by the emission. 

With many agents there may be a large number of emissions being modeled at any point 

in time. A description of how these are managed is provided in the next section.  
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4. The Ether 

The term ether is borrowed from antique physics. Also known as the aether, the 

ether was supposedly a medium pervading all space that supported the transmission of 

electromagnetic waves. In MARSS the term ether is used to refer to the model construct 

that holds and manages emissions.  

The ether manages these emissions in a relatively simple way. Each new emission 

is placed into a bin according to its band. The responsibility for updating an emission 

rests with its creating emitter. All the ether does is to provide a convenient mechanism to 

get all of the emissions in a particular band.  

A more sophisticated approach to emission management may be to further bin the 

emissions according to some area of interest management rule. Emissions originating in 

some geographic area would be grouped together. The dimensions of the geographic 

volumes could be based on some function of the most sensitive sensor, the most energetic 

emission, and the band attenuation function. This area of interest management is not 

implemented in MARSS, but would be relatively simple to achieve.  

 

5. Modeling Reflected Signals 

In the physical world the energy that contains signaled information does not 

always originate at the entity, but is often reflected. The reflection of light by a tank, 

reflection of a radar signal by an aircraft, or reflection of sound by a submarine are all 

examples. The emission model presented here can easily handle the case where these 

reflected signals are either constant or some function of the reflecting entities state. To do 

so we imagine that the entity is the originator of the emission and ignore the process of 

the energy getting to it. With a little more difficulty ‘ping’ type reflections can also be 

modeled. In this case the emitter must be set to send an emission at appropriate times.  

Where we wish to model a process where an entity sends a signal, it is reflected 

by one entity, and then received by the originator, or even some other entity, the MARSS 

model must be bent a little. The originator can model sending of the signal as an 

emission. The entity to reflect it must sense that signal (using the sensing process to be 
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described in the next section), and then emit a reflected emission. This reflected emission 

could then be sensed. For many purposes this convoluted process is not required and 

reflected emissions can just be modeled as normal emissions.  

 

6. Signals For Communication 

The emission process is the only means built in MARSS to allow communication 

between agents. This is a deliberate design decision so that all information presented to 

an agent that may be used for decision-making is in the same format. In a way this idea is 

close to the real world, as all communication transmissions involve some form of energy 

transfer.  

For communication to be effective an agent should be modeled in a particular 

way. First, properties that are to be communicated, or message properties, need to be 

modeled. These may be some properties an agent has already, such as location or current 

waypoint. A particular message property may be created, such as a scalar that represents 

the agent’s intentions. Next, the agent needs a property that it uses as a switch for 

communication. This may be extended to a property that controls the transmitted signal 

strength. The agent also needs a signal type for each type of message that it wishes to 

send. Rather than the signal type representing some image of the entity, it represents a 

signal that the agent will send. Finally, an emitter must be added to send the signal and a 

band conceived in which the signals are sent. 

Agents that receive these communicated signals need only have a sensor that is 

capable of receiving information in the particular band. The sensing system will 

automatically process the signal for use by the agent in the decision making process. The 

important thing here is that a communicated message is modeled as just another piece of 

sensed information by the agent.  

 

7. Signals For Attrition 

MARSS is not designed to represent large scale and complex attrition between 

entities. There may still be a need however to model attrition to reflect some real process. 
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One way to do this in MARSS is to have the shooting process modeled as an emission, 

much like the communication process previously described. The shooting agent needs 

appropriate properties, signal types and emitters. The model needs an appropriate band, 

and agents subject to attrition need attrition ‘sensors’ and a mechanism to deal with the 

effects of the weapon systems.  

In a sense this model is not all that far from reality. The operation of any weapon 

in the modern battle space involves the transfer of energy from one entity to another. By 

modeling this transfer as an emission and sensing process a variety of other effects built 

into more complex combat models can be represented. This includes taking into account 

probability of kill and probability of hit parameters used in many combat models 

 

D. THE OPERATION OF SENSORS 

 

1. Sensors 

With an ether full of emissions the final task in the sensing process is to take 

information the emissions link to, and complete the construction of the inner 

environment. To accomplish this agents have zero or more sensors. Each sensor has a 

number of parameters that control what signals it receives from the ether. A sensor will 

typically process a number of emissions, accepting some as received, and rejecting 

others. There is no notion of partial receipt of a signal; it is all or nothing.  

The first parameter that controls what emissions a sensor processes is the band. 

Each sensor is allocated only one band in which it can receive information. The 

remaining parameters are the sensors sensitivity, geometric constraints, and signal type 

capability. These are covered in turn.  

 

2. Sensitivity 

Each sensor has two parameters that control the sensitivity associated with it. One 

or more of the sensing agent’s properties may dynamically control these parameters. 

They are the current, or ‘entity’, sensitivity (this is described more fully in signal type 
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capability), and the maximum sensitivity. A simple interpretation of the sensitivity is a 

level against which the strength of received signals is measured. If the received signal 

strength is greater than the sensitivity, then the signal is received. A higher sensitivity 

value will mean that more signal strength is required for the signal to be received. This is 

a little counter intuitive as a higher sensitivity value results in a less sensitive sensor, and 

a lower sensitivity value results in a more sensitive sensor. 

 

3. Geometric Constraints 

In reality some sensors are directed. Real sensors may only be able to receive 

signals from a particular direction, or from a specific minimum or maximum distance. In 

MARSS each sensor has a function that checks the location of the incoming signal 

against the orientation of the sensor and returns a Boolean value that controls if that 

signal can be measured. This geometric constraint check must be defined for each sensor. 

 

4. Signal Type Capability 

When a sensor is constructed the signal types that it has the capability to detect 

are defined. By default each sensor has the capability to detect an ‘entity’ signal type. 

This is the default signal type associated with each entity. Associated with each signal 

type capability is a scalar value termed a ‘sense threshold factor’. This factor is used to 

modify the base, or ‘entity’, sensitivity of a sensor in a multiplicative way. This defines 

the actual sensitivity for the particular signal type the threshold factor is associated with.  

The sense threshold factor associated with the ‘entity’ signal type is equal to one. Other 

signal types typically will have a value greater than one. A sensor with more than one 

signal type capability will therefore have a sensitivity level for each signal type it can 

sense. These adjusted sensitivities will all be some multiple of the ‘entity’ sensitivity.  

 

5. Putting It All Together 

To summarize the above process a sensor first checks the ether and gets all 

emissions from the band that it senses. It then looks at each emission, rejecting the 

emission if the sensors owner was the originator of the emissions. Next, the sensor does a 
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geometry check to determine if it is possible that it sensed the emission, rejecting it if not 

possible. The received emissions original strength is then attenuated according to the 

relevant band attenuation function to get received signal strength.  

The sensor must then determine if it has the capability to receive a signal from the 

emission, based on the emission’s originator signal types, the sensor’s signal type 

capabilities, and the associated sensitivity. The first check here is to iterate over the 

sensor’s sensitivities for each signal type until a sensitivity value is below or equal to the 

received signal strength. When this is found the emission’s originator is queried to 

determine if it emits a signal type the same as the relevant signal type capability of the 

sensor. If so the sensor senses the signal type, the appropriate information is transferred 

to the entities inner environment, and the next emission is considered. If not the sensor 

proceeds to the next sensitivity value and checks again.  Each emission can only be 

received by a sensor as one signal type.  

 

6. Managing The Sensed Information 

Each agent has a manager to take care of and operate all of its sensors. This 

manager also manages the sensed information. The manager contains a bin for each 

signal type capability that its sensors have. Each sensed signal is a mapping of property 

names to values. These values represent some portion of the state of the entity being 

sensed. Note that this sensing process does not give a sensing entity direct access to the 

state of another entity, as this would violate the general policy of information 

encapsulation. Instead state information is copied and passed into the sensing entities 

inner environment. With the completion of this process the agent now has a complete 

inner environment that its behavioral model can use for decision-making.  

 

E.  A SIMPLE SENSING EXAMPLE FOR SEARCH 

The simplest of all sensors used in search scenarios is the cookie cutter sensor. A 

target is sensed if it is less than some range r, and is not if it is further than that range. 

One example of how to construct such a relationship between a target and a sensor in 

MARSS is given here. There are other ways to implement a cookie cutter sensor. In 
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effect this relationship will allow a sensor to know the location of the target if it is at a 

range less than r. 

First one generic band is used. The attenuation function is linear. The signal 

strength received (Sr) is equal to the signal strength emitted (Se) minus a constant (k) 

times distance (d) (Sr = Se – kd ,  d > 0). Targets are left with the default signal type 

(“entity” – maps to location) and are given a constant signal strength (Se) emitter. 

Searchers are given a sensor with a default signal type capability (entity) and a constant 

sensitivity (Ss). The range at which detection will occur is then given by the relationship, 

r = (Se-Ss)/k.  

Although this implementation of a cookie cutter sensor model in MARSS may 

seem complex, the modeling process is capable of modeling much more involved 

relationships between targets and searchers.  

F. FLEXIBILITY AND LIMITATIONS OF THE SENSING MODEL 

The sensing modeling process described here has the capability to be easily 

expanded to take into account many process not yet described. For example, by designing 

emitters and sensors so that emitted signal strength, and a sensor’s sensitivity, are some 

random process, uncertainty can been introduced into the sensing process. This 

uncertainty is slightly more sophisticated than a random perturbation of the attenuation 

function (which is also easy to implement), since there is a relationship between two 

otherwise unconnected sensors and a single emitter. If the emitter is emitting with a large 

signal strength (perhaps corresponding to being at the top of a hill), then the signal is 

more likely to be received by both sensors. Likewise multiple emitters and a single sensor 

can create similar relationships.  

The sensing model could also be made with a more sophisticated interpretation of 

geometries. The current geometry check for a sensor just checks to see if the relative 

orientation of the sensing entity is such that sensing is possible. A more sophisticated 

approach could vary the sensitivity continuously based on the orientation, more closely 

modeling reality. On the emission side the initial signal strength could be modified due to 
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the originators’ orientation. This would require a simple enhancement to the sensing 

model.  

The policy of information encapsulation is strictly adhered to in the MARSS 

model of sensing. Agents do not have direct access to information about other agents. 

Rather they have to go through the sensing process to get to it, and then they only get a 

copy. This is an important design consideration to help prevent errors in implementations 

of the model. It also allows imperfections, or noise, to be introduced in the transmission 

of information.  

 

G. SUMMARY 

The MARSS sensing model takes information about the outer environment and 

transfers it to an agent’s inner environment. It does this by modeling the emission and 

receipt of signals containing information about other agents’ properties. The sensing 

model is flexible enough to allow a wide range of complex agent interaction processes to 

be represented, yet simple enough to model sensing process used in other models. With a 

representation of the world in their inner environment an agent must make decisions on 

what to do. The behavioral model discussed in the next chapter handles this process.  
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IV. CREATING ROBOT BEHAVIOR 

A. CREATING VS. MODELING BEHAVIOR 

Many agent-based simulation models attempt to create a behavior of a group of 

agents that in some way mimics the behavior of real world entities. Examples of such 

simulations include models that mimic the behavior of a flock of birds or a swarm of 

ants. Simulations have been built that attempt to model some aspect of individual or 

collective human behavior. In some cases an attempt was made to model an emergent 

group behavior by creating individual behaviors.  

The philosophy behind MARSS is very different. Rather than attempting to mimic 

a given behavior we are trying to create one. We have no preconceived notion of what the 

emergent behavior will look like; however we have a way to compare the performance of 

different emergent behaviors. The model is used to represent a behavioral process rather 

than a particular behavior. This subtle difference is very important as it markedly changes 

the way a simulation is designed and used.    

 

B. THE BEHAVIORAL TASK 

An agent behavioral model takes input from the inner environment that is formed 

from the sensing model and from the agent’s own state. An output generated as a function 

of the inner environment and is used to affect some aspect of the agent’s own state. Many 

behaviors that can be conceived may be generalized to fit into the MARSS model. The 

following sections cover a particular way of mapping information in an agent’s inner 

environment to changes in an agent’s state.  

 

C. BEHAVIOR MEASURES OF EFFECTIVENESS 

To compare the behavior of agents we must have some way of measuring it. This 

measurement is specific to each agent, and each task it is allocated to undertake; 

however, there are some consistencies between measures. Each measure of an agent’s 

performance will have a value associated with it. For MARSS a measure also has an 
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array of information that was used to measure that agent’s performance. The structure of 

this information is unique to each type of agent measure designed. The information 

contained in a measure is used for the measurement reporting process.  

A distinction must be made between two different kinds of ways to measure an 

agent’s performance. An agent’s performance may be measured either internally or 

externally. An agent’s internal measure its limited to the information in its inner 

environment over time. Measuring an agent’s performance externally allows a much 

richer pool of information to be used; however such a measure should not be used by an 

agent’s own behavioral system. To do so would violate the information encapsulation 

principles that apply to the agent system being modeled. An agent may use an internal 

measure and compare it to its goals, adjusting its behavior. External measures are only of 

interest to the analyst, however they may be used by the system as part of some behavior 

optimization algorithm. A distinction between internal and external measures of 

performance can be made at every level of performance measurement.  

In MARSS we are concerned with measuring the performance of a swarm of 

agents. While not required it seems logical to measure the performance of a swarm based 

on the performance of the individual agents. In MARSS the performance of a swarm is an 

external measure that is the sum of the internal measures each agent makes of their own 

performance.  

An agent may use internal measures of performance to dynamically change its 

behavior. Measures may be made of how well an agent is achieving a particular goal. 

Such measures are used to create adapting behaviors. Although no such behaviors were 

created for the work reported here, the building blocks are there to do so.  

 

D. DEGREES OF FREEDOM 

The part of an agent’s state that the behavioral process can affect is called its 

degrees of freedom. In addition to characterizing an agent’s properties as vector or scalar 

they are characterized as changeable or not changeable. Some of the changeable 

properties may be able to be affected by an agent’s behavioral model. These properties 

are the agent’s degrees of freedom and represent what the behavioral process can affect.  
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The degrees of freedom are the only properties that an agent’s behavior may 

change. The model may change other properties. An example of this is the relationship 

between the acceleration, velocity and location properties that are implemented for 

mobile entities in the MARSS model. All of these properties are changeable, however in 

most cases the only one that is part of an agent’s degrees of freedom is acceleration. The 

velocity and location are updated by the MARSS model based on the current velocity, the 

location, and the agent’s intended acceleration.  

 

E. BEHAVIOR MAPPING 

It is possible to describe a behavior where there is some complex mapping of the 

inner environment to an agent’s degrees of freedom. This quickly results in a behavioral 

model that is complex and specific to a particular agent. Any slight change in the 

behavior that we wish to model may require a major change to the code we have 

developed to represent that. To help alleviate this problem a generic and expandable way 

of mapping the inner environment to degrees of freedom has been developed. This 

method is similar to that used in related research [Hiles et al. 2001]. 

 

1. Connectors 

The connector is the main construct to link some properties from the inner 

environment to a degree of freedom. A connector is designed so that it has many inputs 

and only one output (i.e. it affects only one of the agent degrees of freedom). The types of 

functions that a connector may perform are only limited by imagination. Some generic 

connecters have been developed for the MARSS model; however these are by no means 

the limit on what could be produced. For example, a connecter has been developed that 

takes a two vector inputs from the inner environment, determines their difference, 

normalizes and scales the result, and applies this as a property change suggestion to a 

changeable vector property. This connector may be used to cause an agent to accelerate 

towards a particular object is senses. Many other connectors have been developed. 
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Note that the output from an individual connector is a weighted suggested change 

to a particular property. All suggestions for that property are added and the result 

restricted by the property bounds before being applied.  

 

2.  Tickets 

Most agent behaviors will have more than one connector. A structure has been 

developed to hold many connectors. This structure is called a ticket. [Hiles et al. 2001] 

The tickets developed for MARSS are sequential. Each connector is executed in turn for 

a particular ticket.  

The ticket construct could be used to create much more complex behaviors. 

Multiple tickets could be applied to different scenarios that an agent faces to create some 

type of adaptive behavior.  

 

3. Regulators 

To control the execution of a group of connectors a model construct called a 

regulator was developed. A connector may or may not have a regulator. Regulators are 

grouped together in a regulator group. Regulators within a regulator group are designed 

to control the execution of connectors to which other regulators within the group belong. 

The normal way this works is that connectors on an individual ticket belong to a single 

regulator group.  

Regulators have a type, and a list of types that, if activated, will stop the execution 

of the connector to which it belongs. This allows connectors to be conditionally executed 

based on the prior activation of regulators by other connectors in the sequential ticket. 

Generally a regulator will only extend (activate) if the execution of a connector achieved 

some standard.  

The regulator framework allows complex behaviors to be built. For example an 

agent may try to do A, and if that is successful, skip B and C, however if A was not 

successful then it will try B, etc. This degree of flexibility in model design is important to 

be able to capture a wide variety of behaviors.  
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4. Factors 

The discussion of the operation of a connector noted that the vector was scaled by 

a factor before applying it as a suggested property change. A factor is a value that 

controls some aspect of the operation of a connector. The level of the factor is just one of 

the decisions that must be made in constructing a function for a connector. These factors 

are the key to controlling an agent’s behavior. A factor could perform any function in a 

connector however the most common is to weight the suggested change by a certain 

amount. Factors may be used as a yardstick to compare some aspect of the agent’s inner 

environment against. For example, the connector’s function may have a conditional 

statement that controls the operation of the connector where the magnitude of its MOE is 

tested against a factor value. 

The levels that factors are set at define how an agent behaves. Once a behavior 

has been designed, the task is to determine at what levels to set the factors in order to get 

the best behavior from the agent or, in the case of MARSS, a swarm of agents. Each 

agent has a behavior factor manager to manage the factors that are used to control 

behavior. For each simulation run a factors level is held constant. 

It is possible to use factors that are not associated with connectors if some other 

kind of model for a behavior is being developed. In such cases the factors would still 

control some aspect of the behavior that the agent undertook. 

The same factor model may be used to control non-behavior parameters of an 

agent. A factor may for example, represent some physical capability of an agent, such as 

sensor sensitivity.  

  

F. SWARM BEHAVIOR 

The behavior previously described was for an individual agent. In MARSS we are 

interested in the behavior of a swarm of agents. Swarm behaviors are not explicitly 

designed. Rather they emerge from the interactions of individual agents. We can however 

characterize some aspects of a swarm behavior at the building stage. Swarms can be 

either homogeneous or heterogeneous. There are different levels of homogeneity. In a 
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completely homogeneous swarm each agent would have the same properties, emitters, 

sensors, behavior, and the levels that the factors are set at would be exactly the same. 

Swarms may be partly heterogeneous if one or more of the above properties are not 

constant throughout the group. A completely heterogeneous swarm would be a group of 

agents that have no common similarities other than a common measure of effectiveness.  

MARSS scenarios have only been built for mostly homogeneous swarms.  The 

swarms are heterogeneous in the levels that their factors are set at, and are homogeneous 

in physical capability and behavior construct. The possibilities are limitless for creating 

swarms at various levels of heterogeneity.  

 

G. COOPERATIVE BEHAVIOR 

Agents may cooperate in a deliberate or emergent manner. For deliberate 

cooperation there is some explicit communication between the agents that controls their 

behavior to help move towards a group goal. Emergent cooperation is subtler and occurs 

when the individual behaviors are such that agents share tasks or do not duplicate effort, 

for example. Although a scenario could be easily implemented in the MARSS model to 

force deliberate cooperation between agents, work so far has focused on emergent 

cooperation.  

The beauty of emergent cooperation is that there is no requirement for a leader, 

just a set of cooperative rules that each agent possesses in order to get a job done. This 

kind of cooperation is often seen in nature [Franks, Sendova-Franks and Anderson 2001]. 

Scenarios implemented in the MARSS model have considered such basic cooperation 

between searchers. In this case a set of rules is developed to help reduce duplication of 

effort, and increase effort of the group in a direction most likely to produce the desired 

swarm outcome.  

Rather than emergent or deliberate cooperation mechanisms being absolute, a 

spectrum can be envisaged. At one end there is completely emergent cooperation, and at 

the other completely deliberate. In between, agents may have both cooperative rules and 

a mechanism to transfer intent between members of the group.  
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H.  SEARCHING FOR BEHAVIORS 

 

1. General 

When using the ticket, connector, and factor architecture described in this chapter 

to model behavior, the task of determining an optimum behavior is reduced to 

determining the optimal levels that the behavioral factors should be set to. This assumes 

that the designer of the connectors and tickets is representing enough behavioral 

flexibility based on the available inputs from the inner environment and the degrees of 

freedom of the agent. Couched in this context, of determining optimal levels for a range 

of factors to produce a desired (or optimal) swarm response, the problem is a typical 

search problem that is faced by analysts. A common approach to solving this problem in 

agent-based design is to use some genetic algorithm to adjust the levels between 

simulation runs, with the aim being to evolve to a good solution. In addition to using that 

technique the work reported here used designed experiments to explore the response 

surface in a more systematic way. These two techniques are described and compared 

below.  

 

2. Evolving Behaviors 

In order to use search methods involving genetic or evolutionary type algorithms 

to evolve the behavior of a swarm, some degree of heterogeneity between swarm 

members is required. The selection process of evolutionary algorithms requires this 

variation if we are to link good actions to some aspect of the agent. There must be a way 

of measuring individual performance contribution to the overall group goal. In MARSS 

the heterogeneity is produced by having a mix of factor levels for a particular factor that 

every member of the swarm has. The measures of swarm and entity performance that 

have been previously described are suited to evolving behaviors.  

After a simulation run the entities in a swarm are ordered according to their 

performance (as defined by their individual measure of effectiveness). The top half 

performing entities are used as a ‘mating pool’. A new swarm is formed with the same 

number of entities as the old swarm. Two entities are selected from the mating pool at 
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random (with replacement). For each of the factor levels to be set on the new entity a 

level is chosen from one of the two selected from the mating pool (again at random). This 

is applied to the new entity with a possible mutation. Each factor on each entity is set 

using this method. In theory after many mutations those factor levels that result in good 

swarm performance are preferred and the swarm performance improves. 

The mutation mechanism in the MARSS model is slightly different from a 

standard genetic algorithm. Factors are allocated a random variate and a mutation 

probability. When a factor is copied a uniform random number is compared against the 

mutation probability. If mutation occurs then the level of the factor is set to a new value 

generated from the random variate. The random variate can be from any distribution for 

each particular factor.  

Searching a behavioral response surface using evolutionary theory can be likened 

to many concurrent hill-climbing algorithms with random jumps. It can only be used in 

the MARSS model when swarm behavior is heterogeneous with regard to factor levels. 

Heterogeneous factor levels would be difficult to analyze using designed experiments 

since the number of factors that control the response surface would be the number of 

agents in the swarm, multiplied by the number of factors for each agent.  

 

3. Designed Experiments 

Using designed experiments to explore response surfaces has not been a common 

procedure with agent-based simulations. For the MARSS model it has been the primary 

response investigation tool so far. A number of experimental design principles have been 

implemented in the MARSS model. These include the ability to use common random 

numbers over a block of simulation runs. The ability to conduct full factorial, grid search, 

random sampling, and Latin hypercube setting of factors has been implemented. Entities 

may have a factor level setter that manages the setting of factors using one of these 

methodologies between simulation runs. This allows those factors, and in some cases 

interactions between the factors, that are not significant to the response to be identified.  

A more complete description of some of the designed experiments conducted so 

far is reported with the results of those experiments. 



41 

I.  FUTURE WORK WITH BEHAVIOR 

 

The agent behavioral mechanism described here produces reactive rather than 

adaptive agents. Adaptive agents could also be modeled in MARSS with straightforward 

enhancements.  

The main enhancement that could be undertaken would be to allow for grouping 

of tickets into goals, ticket exchange, ticket modification and construction, and the 

grouping of goals into roles. A proposed structure would involve many tickets, goals and 

roles in a similar fashion to previous work on adaptive agents. [Hiles et al 2001] This 

would allow agents to have a complex adaptive behavior, reacting to their environment 

and learning. This is not yet implemented in the MARSS model; however, it was a design 

consideration from the beginning.  

In addition, there is scope to randomly generate connectors in order to implement 

some adaptive learning. These and other more complex mappings of the inner 

environment to agents’ degrees of freedom would be a useful addition to the MARSS 

model. 

Although evolving behaviors were designed and tested in the MARSS model 

some implementation problems prevented their use for production experiments. With 

more work these problems could be easily overcome. It is expected that a combination of 

evolving behaviors and designed experiments would be a particularly powerful analytical 

tool.  

 

J.  SUMMARY 

 

The role of the behavioral sub-model is to map information from the inner 

environment to the degrees of freedom an agent has to change its own properties. This 

mapping is performed by the behavioral function. In MARSS these functions are 

implemented as connectors, tickets and regulators, and factors. By changing the factor 

levels the behavior of an agent will change. Once a general behavior is designed the task 
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is to find what levels to set the factors at to produce an emergent behavior. In MARSS 

this is done using genetic evolution and designed experiments 
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V. MARSS DESIGN AND FEATURES 

A. GENERAL 

 

The development of a modeling process to represent robot swarms and the 

MARSS tool occurred concurrently. This chapter is about how the model is implemented 

in MARSS and describes some features of the MARSS tool. Appendix A contains a 

graphical description of the MARSS tool and is designed to be read in conjunction with 

this chapter. This chapter expands on the graphical description where the pictures in 

Appendix A cannot tell the story.  

The remainder of this chapter provides expansion on design aspects that are 

unique or important to MARSS, it describes how MARSS can be used to help answer 

questions and explore problems, and finally a description of enhancements that are 

possible are described.  

MARSS is free for all to use. Further information, downloads, and up to date 

information may be found at http://diana.or.nps.navy.mil/~ajdickie/marss. 

 

 

B.  DEVELOPMENT ENVIRONMENT 

 

1. General 

MARSS was developed using the Java Software Development kit version J2SE 

1.4 provided by Sun Microsystems. A number of extension Application Programming 

Interfaces (API’s) were used to enhance the capabilities of the basic development kit 

provided by Sun. The tool used for all development was the integrated development 

environment provided by Sun, Forte for Java, Community Edition. All development tools 

were free and well documented. Without this capability MARSS would not have been 

developed.   
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2. Java3D 

The Java3D API provided by Sun Microsystems was used to provide a 3D 

graphical interface. This scene graph orientated API was found to be easy to use and well 

supported. In conjunction with Java3D some code was used from the www.j3d.org code 

repository. The vrml97.jar scene graph loader provided by Sun was used to load the 3D 

models that represented entities.  

 

3. Simkit 

Simkit is an event driven simulation API designed by Professor Arnold Buss at 

the Naval Postgraduate School. Not all aspects of Simkit were used. It is the primary 

driver to run the simulation. The Simkit engine also handles all randomness in MARSS.  

 

4.  JDOM 

JDOM is an API for using the eXtensible Markup Language (XML) in Java. It 

was used to load, save and process data in XML formats.  

 

C.  DESIGN 

 

1. Design As A Tool 

From the outset MARSS was designed for use as a tool for analysts. Many agent-

based simulations are designed primarily to simulate some scenario to either visualize 

that scenario, or to mimic some observed behavior. MARSS can be used for both of these 

purposes; however, its strength lies in its ability to help answer questions. Once an 

analyst has described a problem, if that problem concerns trying to determine some tactic 

or behavior for a group of robots, then MARSS may be a suitable tool to provide insight. 

MARSS cannot provide any absolute answer. It does however present a unique capability 

amongst the range of tools available.  
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2. Information Encapsulation 

When programming in an object orientated language such as Java some form of 

information encapsulation is routine. Without careful design it would still be possible for 

some programming construct to get information about another inadvertently. MARSS has 

been designed to try to prevent this. In a valid scenario, agents cannot gain any 

information about other agents except through the sensing mechanism. 

 

3. Development of an API 

MARSS is more than just a graphical tool that analysts can use. Much of the 

programming construct is suitable for use by other programmers. Parts of the program 

can be used for the creation of more elaborate, or even simpler, simulations. The ability 

of Java to automatically generate documentation, and the intention of making the source 

code freely available are important factors that enhance the use of MARSS as an API. 

 

4. Deployability 

Although designed to be used by analysts,  it is recognized that not all analysts are 

Java programmers. With this in mind the intention from the outset has been to create a 

program that is easy for the analyst to install and use. This has affected the way that code 

is written in that it must be compatible with the deployed system, especially in relation to 

file input and output. InstallAnywhereNow was chosen as the deployment solution. 

InstallAnywhereNow is a free product available from www.zerog.com. The product 

provides an interface that allows the creation and deployment of install programs that 

shield the user from many of the problems associated with getting Java programs 

running. Without this product the deployment of MARSS would be much more difficult.  

 

5. Model –View Separation 

The main use of MARSS is to run simulation experiments. This is a 

computationally intensive process. The display of what is going on in the simulation is 

also computationally intensive. It is important to be able to execute the simulation 
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without any graphical display. The code to run the simulation model is completely 

separate from the code that runs the graphical view. There is a very thin interface that 

allows the graphical view to poll the simulation to check its state in order to represent it. 

It is possible to switch MARSS to ‘text’ mode for rapid scenario execution. This strips 

the entire graphical environment overhead from using memory and processor resources. 

 

6. GUI Environment 

The Graphical User Interface (GUI) is designed primarily as a scenario debugging 

and visualization tool. Face validation by an analyst is an important part of the model 

development process. The 2D and 3D displays of the model have proved invaluable for 

doing this. A side benefit that the displays provide is the ability to quickly brief observers 

about a particular scenario. The GUI is described in more detail in Appendix A.  

 

7. Rapid Scenario Creation 

A common criticism of large-scale US Department of Defense simulations is that 

scenarios can take a tremendous amount of time to create. The entire structure of MARSS 

is such that scenarios can be rapidly created and debugged. Scenarios are defined 

externally in XML using an XML editor (for more information on XML visit 

www.w3.org/XML/).  A scenario defined in XML can be thought of as a rooted tree with 

nodes representing entities. Further nodes represent behaviors, properties and sensors for 

each entity and so on until the entire scenario is described.  

Once a scenario has been created in XML, it can be validated outside of the 

MARSS program against an XML Schema. It may also be shared between users of 

MARSS like any other file.  

 

8. Random Seed Management 

The use of the random number capabilities of Simkit allows randomness to be 

effectively managed in MARSS. One random seed is used to control all randomness in a 

particular simulation run. This random seed can come from a list of seeds that is iterated 
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over between simulation runs, the seed itself can be generated randomly, or the user may 

provide the seed. This management of seeds allows repeatability for debugging purposes.  

The main reason to manage random seeds however is for designed experiments. 

Doing so can greatly reduce variation between simulation runs, and reduce the time it 

takes to get data with the same level of accuracy.  

 

9. Data Collection 

MARSS has some data collection techniques to gather data between simulation 

runs. Currently the data that is gathered consists of the information in a swarm MOE, the 

random seed used, and the levels that factors are set at. The procedure used to gather this 

data can be relatively easily modified to gather any type of data between simulation runs.  

 

10. Variable Time Step 

 Most agent-based simulations use a time step methodology where time is moved 

forward by some constant increment and the state of the simulation recalculated. This 

happens over and over, in many cases with a time step that cannot be changed. It has 

been shown that the size of the time step can change the results that one observes in both 

a qualitative and quantitative way. MARSS uses Simkit to allow each entity to have its 

own time step. 

 Each entity updates its own state. Upon doing this it then determines when to 

update its state next. It does this by generating a value from a random variate that belongs 

to that entity. This random variate may be a ‘constant’ random variate in which case the 

time step will be constant for that entity at each stage. Any random variate that is defined 

in Simkit can be used as this time step.  

 Note that this allows entities to update their state at different rates. Some entities 

may update their state more often so there is greater resolution, others may have few 

significant state updates and as such there is no need to spend valuable computational 

resources updating their state.  

 



48 

11. Event Diagram 

The event diagram for MARSS is shown in Figure 2. This is a graphical 

representation of how and when the states of entities change as the simulation progresses.  

Join 
Environ

Act

Leave
Environ

Decide

Sense
Run

Entity

Invoke
Stop
Sim

Swarm

Scenario

Invoke
Stop
Sim

Leave
Environ

Add
Entity

Ping Thread

Run Ping

MARSS Control 
Frame

Leave
Environ Ping

Frame 2D

Ping

SwarmStopListener

Invoke
Stop
Sim

MODEL VIEW

 
Figure 3.   MARSS Event Diagram 

 

Entities may enter the environment after the simulation has started. This allows an 

entity to ‘appear’ at a particular time in a simulation.  

The main part of the simulation is the Sense-Decide-Act loop. These events are 

given priorities so that all Sense events happen before Decide events, which happen 

before Act events. In conjunction with the property change architecture, this allows 

entities to effectively carry out actions concurrently.  

A Sense event schedules a Decide event to occur in zero simulation time. The 

Decide event will then schedule an Act event, again in zero simulation time. The Act 

event then schedules the next Sense event. The delay between Act and Sense is 
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determined on a per entity basis depending on the random variate allocated to control the 

step for that entity.  

If two or more entities are scheduled to carry out a Sense event at the same time 

then they will all build their inner environment before the Decide event is undertaken. 

During the Sense event their sensors are asked to sense the ether and determine if there 

are any emissions that are detected.  

During Decide events an entity’s behavioral mechanism will make property 

change suggestions to those degrees of freedom that an entity decides to alter. All Decide 

events scheduled for a particular time will occur before the Act events.  

The first thing to occur during an Act event is the agent’s property change 

suggestions are applied and the property changes occur. The model then may also adjust 

properties such as location and velocity based on acceleration, for example. These model-

adjusted properties are determined in code. The last thing an agent does before the Act 

event schedules a new Sense event is to have its emitters update any emissions that are in 

the ether to reflect its new state.  

 

12. Coordinate System 

A particular aspect of the MARSS environment is the coordinate system used. 

The coordinate system was chosen to enable easy integration with Java3D and is in 

nominal units (however meters are used for all scenarios). The coordinate system is right 

handed with y being height. This depicted in the figure below. 

 

 

 

 

 

 

 

Figure 4.   Coordinate System 
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13. Automated Designed Experiments 

MARSS is designed primarily as a tool to conduct experiments. One important 

design consideration was to implement a FactorLevelSetter that controls what levels 

factors are set at between simulation runs. Such a device is built into MARSS. When 

factors are first defined an upper and lower level and an initial value is given for each. 

FactorLevelSetter’s may be assigned to swarm’s to control the factor levels for that 

swarm. Currently only a FactorLevelSetter for homogenous swarms is implemented. 

The FactorLevelSetter can be assigned to control any factors that are important to 

the simulation response. The levels for factors not assigned remain at the initial value. 

The current FactorLevelSetter has four modes. The first is a full factorial mode. In this 

mode 2n runs are conducted with n assigned factors set at upper and lower levels. Mode 

two sets the factors at random levels uniformly between the upper and lower level. Mode 

three is used for grid design. Assigned factors (n of them) are set at x levels for a design 

with xn runs.  

The last mode, mode four, is used to set factor levels according to a Latin 

Hypercube design. Each factor is split into n levels, where n is the number of factors 

assigned. A design is constructed so that no level appears twice for any factor over n 

runs, and so that no run has the same level for any pair of factors. An example of this 

design is given in the table below for an experiment with four factors.  

 

Factor Levels that each factor is 

set to in each run. A B C D 

1 3 2 1 4 

2 1 4 3 2 

3 4 1 2 3 
Run 

4 2 3 4 1 

 
Table 1.   An example of a 4x4 Latin hypercube 
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The FactorLevelSetter built into MARSS will automatically generate Latin 

hypercubes at random reasonably effectively for up to 30x30 size cubes (<3 seconds). 

Larger cubes can still be generated but it becomes very slow for cubes greater than 

40x40.  

Randomness is controlled for the full factorial, grid, and Latin hypercube by a set 

of seeds assigned to the FactorLevelSetter. For each set of full factorial, grid or Latin 

hypercube runs the seed is kept constant. This may be turned off and a random seed used 

for each run if desired.  

 

D. USE OF MARSS 

 

This section is not meant to be a full tutorial on how to build, debug and 

implement a particular scenario in MARSS. Rather it is should give the reader an idea of 

the scope and magnitude of the task.  

The first step is to define the scenario in broad terms. How many entities, what 

are they doing, what is being represented. Before going to the next step the analyst should 

determine what he or she wishes to determine from the model. This can be the most time 

consuming step. 

Before starting to implement a scenario it should be designed. This includes 

defining the following information: 

• How many entities are being modeled and what signal types each entity 
should have. 

• What bands are to be modeled and how does attenuation work for each 
band. 

• What sensors are to be modeled and what capabilities each should have. 

• What emitters need to be modeled. 

• A behavioral mechanism for each entity.  

Once the scenario is fully defined the time to implement it in MARSS is 

dependant on how much programming will need to be done. For most simple scenarios 
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there will be minimal programming. The following steps need to be undertaken to 

complete the implementation. 

• Java programming of bands, sensors, emitters and measures of 
effectiveness that have not already been defined. 

• Programming behaviors and connectors that cannot be represented by 
those already defined. 

• Building an XML document in an external editor that describes the 
scenario. In many cases this will be merely a modification of an existing 
document. 

• Debugging and tuning of the scenario. 

• Analysis of data output and modification of the scenario. 

The basic MARSS scenario is defined in an XML document that is validated 

against an XML schema. The details of how this is done are not included in this report. A 

more complete tutorial and description of how to implement a scenario in MARSS may 

be found at http://diana.or.nps.navy.mil/~ajdickie/marss.  

 

 

E. FUTURE ENHANCEMENTS 

 

A variety of future enhancements have been envisaged for MARSS. This include 

the following: 

• Expanding the behavioral capabilities. 

• Writing more bands, sensors, emitters, and measures for generic use. 

• Incorporating an XML editor in MARSS specifically for developing 
MARSS scenarios. 

• Creation of a more general XML schema specification and its associated 
loader that allows a wider range of scenarios to be developed in XML.  

This is left as future work for any interested parties.  
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VI. A MICRO AIR VEHICLE SCENARIO 

A. BACKGROUND 

 

The Defense Advanced Research Projects Agency (DARPA) is managing a 

program to develop Micro Air Vehicles (MAV’s). The charter is to develop technologies 

that will enable the production of very small aircraft capable of performing military 

missions. MAV’s are defined as aircraft that are no more than 15cm in any dimension. 

Much of the research to date regarding MAV’s has focused on overcoming the 

engineering challenges faced in designing such a small aircraft. More information on the 

DARPA MAV program, including papers describing their possible employment may be 

found at http://www.darpa.mil/tto/programs/mav.html. 

The first MAV’s that will be developed will probably have a human flying the 

vehicle by remote control, and will probably have relatively simple sensors that report 

information back to the controller. It is likely that future generations of MAV’s will be 

able to fly autonomously and will have much more complex sensors with onboard 

processing capability. It is also likely that MAV’s will have the capability to 

communicate some limited information.  

With the capability to fly autonomously and communicate, MAV’s will be able to 

act together to achieve a common mission. The individual behavior that enables a group 

goal to be pursued is the subject of this work. Important individual behavioral factors are 

explored. This work also investigates the effect of increasing an individual’s knowledge 

about other searchers location and contacts.  
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B. SCENARIO DESCRIPTION 

 

1. General 

A potential use for MAV’s will be to conduct search and reconnaissance. In order 

to conduct useful analysis a particular scenario was envisaged. It was important to select 

a scenario that had enough detail to investigate swarming behavior, yet was simple 

enough that it can be understood using analytical techniques. The scenario chosen 

consists of 25 MAV’s searching a rectangular area for four tanks. A number of variations 

on this scenario are made to investigate various aspects of the model.  

The general scenario presented is simple. This simplicity is required in order to 

compare the simulation results to those that can be generated analytically. As the specific 

scenario was enhanced to include more complex MAV behaviors it was decided to retain 

the simple scenario, so that MAV performance with more complex behavior could be 

compared to the base case.  

The remainder of this section describes the basic scenario and its variations in 

more detail. The implementation of the scenarios in MARSS is described in the next 

section.  

 

2. The Environment 

The search environment is a flat 5000 x 5000 m area. There are no obstacles to 

movement or observation, either on the ground, or in the air. This model of the 

environment is a simplification of a flat desert scenario. While not proven in this work it 

is expected that the behavioral results obtained will not be overly sensitive to this 

simplification.  

 

3. Target Tanks 

The targets of the MAV’s search effort are four “tanks”. It is assumed that the 

tanks location probability is uniformly distributed over the search area. The tanks are 

moving at a constant speed of 10 m/s and are located in the search area at all times 
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(except for the follow tanks in Tank Behavior 3 which may sometime stray temporarily). 

Tanks move from waypoint to waypoint in the area. In order to ensure that the tanks 

location probability was uniformly distributed the general movement pattern of a tank 

follows that described in Appendix B. Three different behaviors were used for the tanks. 

These are as follows: 

• Tank Behavior 1. Each tank is moving independently and randomly over 
the entire area. Each tanks start location is uniformly distributed over the 
entire area.  

• Tank Behavior 2. Each tank is moving independently and randomly in a 
separate 2500 x 2500 m quadrant of the search area. Each tanks start 
location is uniformly distributed over its quadrant.  

• Tank Behavior 3. A “lead tank” is moving in a random manner with the 
other three tanks following. The “follow tanks” have a behavior such that 
they will follow the closest tank they see in front of them at 100m at a 
22.5 degree angle (two left and one right). Each follow tank has a sensor 
such that they can sense other tanks in front of them (90 degrees to each 
side) The lead tank notifies the follow tanks of a new way point. If for 
some reason a follow tank does not have a tank to follow, it will proceed 
to the way point and stop just prior to reaching it. There are many more 
subtleties to the tanks behavior however overall the emergent behavior has 
the effect of moving the group of tanks in a clump, roughly spaced at 
100m. The start location of the lead tank is uniformly distributed over the 
entire area. The start location of the follow tanks is uniformly distributed 
in a 200 x 200 m square centered on the lead tank. 

Tanks start moving as soon as the simulation is started and continue to do so until 

all are found. Tanks continue undertaking the behavior given to them even after being 

found. A tank has no way to know if it has been found, nor any way to evade being 

found. It is recognized that none of the tank behaviors described above represent the way 

real tanks operate on a field of battle. The tank behaviors described perhaps more closely 

represent the tactics undertaken by SCUD missile launchers in the desert, without the 

ability to hide.  

 
4. Searcher MAV’s 

A real search mission would consist of a number of phases, including preparation 

for launch, launch, transit to search area, search, return, etc. For this analysis only the 

search phase of the MAV’s mission is modeled.  
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In order for the simulation results to be compared with analytical results, starting 

conditions were abstracted from where searchers may be physically located in reality. In 

all cases searchers were initially located at 50m height.  

Waypoints were located on the boundary and were also at 50m height in all cases. 

For all simple scenarios the searchers stayed at this height and paths were linear between 

waypoints. For some more complex scenarios the searchers were allowed to move 

between 0 and 300 m height, and were allowed to veer from a linear path; however would 

always eventually proceed to their current way point.  

In all scenarios each MAV had an identical “tank sensor” this sensor is a conical 

sensor that always faces downwards with a cone angle of 90 degrees. The sensor is a 

cookie cutter sensor such that the probability of detection if a tank is inside the sensor 

cone is 1 and 0 otherwise. At 50m height this sensor has an effective sweep width of 100 

m at ground level. Other sensors were added for the more complex scenarios to allow the 

MAV’s to communicate, and to sense other MAV’s locations.  

MAV behaviors are divided into simple behaviors, where speed is constant and 

paths are linear, and complex behaviors, where searchers are using connectors and their 

acceleration property to control movement. For all simple behaviors the MAV’s speed is 

constant at 30 m/s. The simple MAV behaviors are as follows: 

• Search Behavior 1. The MAV’s search in an exhaustive manner. Each 
MAV is assigned an area 5000 x 200 m. With 25 searchers the entire 
search area is covered. Each MAV splits its search area into two “sweeps” 
of 5000 x 100 m (based on the tank sensor sweep width). The search path 
is depicted in the figure below. Each MAV continues to conduct sweeps 
until all tanks are found.  

• Search Behavior 2. The MAV’s search in a random manner. Each MAV 
starts on the boundary and patrols the area in a random fashion using the 
movement strategy described in Appendix A. MAV movement is 
independent from other MAV’s. 

• Search Behavior 3. As for Search Behavior 2 however the start location 
is uniformly distributed over the search area.  

 

 

Figure 5.   Search Behavior 1 Individual MAV Path 
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Complex behaviors are discussed in the next section in conjunction with a 

description of how the scenarios were implemented in MARSS.   

 

5. Searcher Measure of Effectiveness 

The overall MOE used for all scenarios is the time taken by the MAV’s to find all 

four tanks. In order to more fully understand the dynamics of a search, the time taken to 

find the first tank, the time from the first to the second, the time from the second to the 

third, and the time from the third to the fourth is also measured. This provides particular 

insights when comparing the results of the basic searches to analytical results. These 

inter-detection times also provide insight when trying to understand why searchers with 

complex behaviors perform as they do.  

 

C. MARSS IMPLEMENTATION 

 

1. General 

All scenarios described were defined using XML. In some cases special java 

classes were written to implement particular characteristics of a searcher or target. The 

information contained in this section is a description of how the MAV scenarios were 

implemented in MARSS. Future scenarios created in MARSS could follow the 

considerations given in this section to create a successful scenario. 

 

2. Bands 

The first consideration made in implementing the MARSS scenario was to 

determine what information was being transferred between agents, and how to split this 

information flow into channels. The bands created for the MARSS scenario are as 

follows: 

• Visual Band. This band was used to transmit information that would be 
received from visual sensors. The attenuation function for the visual band 
follows a square law. The received signal strength is related to the emitted 
signal strength by the following relationship,  Sr = Ss / d2. Nominal units 
are used for signal strengths. The important fact is that at d = 2 the amount 



58 

of signal strength remaining is one quarter of that at d = 1. This 
degradation of a visual strength assumes that the area of a received visual 
signal (corresponding to the number of pixels on an electronic sensor) is 
the measure of its strength.  

• Radio Communications Band. The tanks used this band to transmit 
global information. It has no attenuation function i.e. Sr = Ss. The band is 
meant to represent a communication medium such as satellite 
communications.  

• Proximity Band. For the more complex scenarios MAV’s had to have a 
communications mechanism that was dependant on distance. The 
proximity band was used for this. The attenuation function was Sr = Se – d 
if Se – d > 0 and Sr = 0 otherwise.  

 

3. Properties 

Both the MAV’s and the tanks were implementations of the MobileEntity built 

into MARSS. Such MARSS agents have a standard set of properties. Some additional 

properties were required to implement the more complex behaviors. Not all properties 

listed below were used for all scenarios. The properties of the tanks and MAV’s are 

summarized the tables below. 
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Property Vector/
Scalar 

Value Bound Use 

location vector changeable n/a Tank location 
size scalar 10.0 n/a By the visual band. The 

size is in nominal units. 
health scalar n/a n/a not used 
identifier scalar fixed positive 

integer 
n/a To uniquely identify the 

agent 
orientation vector changeable fixed to tank 

velocity 
not used 

velocity vector changeable magnitude bounds 
– vector length 
constrained from 0 
to 10 

Tank velocity 

acceleration vector changeable n/a not used 
wploc vector changeable n/a Used to keep track of the 

current way point location 
of a tank for 
communication to other 
tanks. 

transmit scalar changeable n/a Used to control the 
transmission strength in 
the Radio Communications 
Band 

 
Table 2.   Tank Properties 
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Property Vector/

Scalar 
Value Bounds Use 

Location vector changeable x (-3000, 3000) 
y (-1, 300) 
z (-3000, 3000) 
 

Tank location 

Size scalar 10.0 n/a By the visual band. The 
size is in nominal units. 

Health scalar n/a n/a not used 
identifier scalar fixed 

positive 
integer 

n/a To uniquely identify the 
agent 

orientation vector fixed at  
(0.0,-
1.0,0.0) 

n/a Used for the orientation 
of the visual sensor 

Velocity vector changeable magnitude bounds – 
vector length 
constrained from 0 to 
30 

Tank velocity 

acceleration vector changeable magnitude bounds – 
vector length 
constrained from 0 to 
30 

Tanks acceleration 

Wploc vector changeable n/a Used to keep track of 
the current way point 
location of a MAV 

foundtankloc vector changeable n/a Keeps the location of 
the closest tank that is 
currently being sensed. 
Not used for all 
scenarios. Note that the 
property is set to a large 
value if there is no tank 
found. 

 
Table 3.   MAV Properties 
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4. Emitters 

In order to emit a signal that can be received each agent must have one or more 

signal types. The signal types of the tanks and MAV’s are shown in the tables below. 

 

Signal Type Properties Transmitted Notes 
Entity location Default signal type 
Tank location, orientation, velocity Included for illustrative 

purposes only. Not actually 
used 

tank(i) location, orientation, velocity, identifier  
tankmessage location, wploc used only by the “lead tank” 

to transmit a new way-point 
location 

 
Table 4.   Tank Signal Types 

 

Signal Type Properties Transmitted Notes 
entity location Default signal type 
swarmer location, foundtankloc Not used for all scenarios 
 

Table 5.   MAV Signal Types  
 

To generate emissions both the MAV’s and tanks require emitters. The emissions 

generated have the capability to be seen as any of the signal types allocated to that agent. 

The signal type that an emission is seen as is dependant on an agent’s sensors. The 

emitters that each agent has are listed in the tables below. Note that the signal strength is 

in no particular units.  

 

Band Initial Signal Strength Notes 
Visual 314 Based on the “size” property 
Radio 
communications 

1.0 Only on the “lead tank” 

 
Table 6.   Tank Emitters  
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Band Initial Signal Strength Notes 
Visual 314 Based on the “size” property 
Proximity 1000 Used only in the more complex 

scenarios 
 

Table 7.   MAV Emitters  
 
5. Sensors 

Sensors give an agent the ability to retrieve information from emissions and place 

that information in their inner environment. The sensors on the tanks and MAV’s are 

listed in the tables below. 

 

Sensor Band Signal Type 
Capabilities 
(multiplier) 

Base Sensitivity 
(nominal units) 

Notes 

Visual entity (1.0), 
tank(1.2), 
tank(i)(1.4) 

0.0005 The geometry is such that a 
tank will sense all visual 
signals in front of it. 

Radio 
communications 

entity(1.0), 
tankmessage(1.0) 

0.0 Setting the signal type 
capability equal to that of 
entity effectively overrides 
that capability. The 
sensitivity is such that all 
emissions will be received. 

 
Table 8.   Tank Sensors 

 
Sensor Band Signal Type 

Capabilities 
(multiplier) 

Base Sensitivity 
(nominal units) 

Notes 

Visual entity (1.0), 
tank(1.2), 
tank(i)(1.4) 

0.0005 The geometry is conical. A 
MAV will sense only in a 
cone centered on its 
orientation with a cone 
angle of 90 degrees 

Proximity entity(1.0), 
swarmer(1.0) 

0.0 Setting the signal type 
capability equal to that of 
entity effectively overrides 
that capability. The base 
sensitivity is such that all 
emissions will be received. 

 
Table 9.   MAV Sensors 
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6. Behaviors 

Each scenario had slightly different behaviors. The tank behaviors (Tank 

Behavior 1 through 3), and basic MAV behaviors (Search Behavior 1 through 3) are 

described in the previous section. These behaviors were implemented in MARSS by 

explicitly writing behavior classes to implement them. The specifics of how the behavior 

was implemented will not be discussed in more detail here.  

The more complex MAV behaviors were implemented with the connector 

methodology. Although regulators were tested on some behaviors they were not used for 

any production runs. The table below describes the connectors used for complex MAV 

behaviors. Not all connectors were used for all scenarios. By combining various 

connectors Search Behaviors 4 through 7 are described in the table. 
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Input 
properties  

Affects 
property 

Factors 
(bounds) 

Used 
with 
Search 
Behavior 

Notes 

location 
 
wploc 

wploc wpDistance 
(10,200) 

4,5,6,7 Determines the distance from the 
MAV’s current location to wploc and 
if less than wpdistance replaces 
wploc with a new way point 
generated at random (using the 
methodology in Appendix B) 

location 
 
wploc 

acceleration accToWP (-
100,100) 

4,5,6,7 Determines the vector from current 
location to wploc, normalizes it and 
scales by factor accToWP. The result 
is suggested as a change to 
acceleration.  

location 
 
tank(i) – 
location 
(sensed 
property) 
 

acceleration accToTank 
(-100,100) 

5,6,7 Determines the vector from current 
location to the closest sensed tank, 
normalizes it and scales by factor 
accToTank. The result is suggested 
as a change to acceleration. 

location 
 
swarmer – 
location 
(sensed 
property) 

acceleration accToNear 6,7 Determines the vector from current 
location to the closest sensed MAV, 
normalizes it and scales by factor 
accToMAV. The result is suggested 
as a change to acceleration. 

location 
 
tank(i) – 
location 
(sensed 
property) 
 

foundtankloc n/a 7 Maps the location of the closed found 
tank to foundtankloc so this property 
will be transmitted. If no tank is 
found sets foundtankloc to a 
magnitude greater than the area of 
interest. 

location 
 
swarmer – 
foundtankloc 
(sensed 
property) 

acceleration accToFound 7 Determines the vector from current 
location to the all sensed swarmers 
foundtankloc property, normalizes it 
and scales by factor accToFound. 
The result is suggested as a change to 
acceleration. If the foundtankloc 
magnitude is greater than the area of 
interest the foundtankloc is ignored. 

 
Table 10.   MAV Connectors 
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7. MOE’s 

Each searcher has an internal MOE that records the time a tank was found and its 

identifier. Future sightings of the same tank are ignored. The individual MOE’s are 

associated with an external swarm MOE that takes the information from all tanks and 

again ignored duplicate sightings. In effect the swarm MOE measure when four tanks 

have been uniquely identified. When this occurred the swarm MOE invokes the stop 

simulation event in the entity that contributed to the find.  

 

8. Other MARSS details 

A “SwarmStopListener” is added to each scenario to listen for the stop simulation 

event. This construct outputs the information contained in the swarm MOE to a file, 

including the time of first detection of each tank. The random seed used for a particular 

run is also recorded.  

Various Geo-Referenced Maps were used to provide a background for the visual 

simulation. This was helpful in the debugging stage of scenario development.  

Simulations were generally set for over 10,000 runs and stopped after a few 

thousand as time permitted. The simulations were designed to stop at time 20,000 if all 

tanks had not been detected although such an event was not observed in production runs.  

A constant time step of 0.5 was generally used for both tanks and MAV’s. This 

provided enough performance without seriously affecting the model of the sensors.  

A standard list of 1000 seeds was used for production runs of the more complex 

scenarios where behavioral factors were being investigated.  
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VII. MAV SCENARIO RESULTS AND ANALYSIS 

A. GENERAL 

 

A range of scenarios were created using combinations of the tank and searcher 

behaviors described in the previous section. The scenarios can be split into simple 

scenarios and complex scenarios. The simple scenarios were designed to produce results 

that could be compared to analytical results, and to provide a base case to measure MAV 

performance in the complex scenarios against. The simple scenarios were either 

exhaustive search or random search.  

The complex scenarios were designed to provide information about how 

improving individual searchers knowledge will improve the performance of the swarm. 

The analysis of these scenarios consisted of first finding the best behavior within the 

sensing and behavioral bounds given, and then determining and understanding the swarm 

performance with that behavior.  

 

B. EXHAUSTIVE SEARCH 
 
1. Analytical Results 

Analytical results were determined for a simplified version of the exhaustive 

search scenarios implemented in simulation. The exhaustive search scenario consists of 

25 searchers searching for four tanks in a 5000 x 5000 m area. The tanks are moving at 

10m/s and the searchers at 30 m/s. The tanks movement is such that they are equally 

likely to be at any point in the area. The searchers each have an area 5000 x 200 m that 

they are sweeping with their 100m sweep width sensor in an exhaustive way. The tanks 

start at random locations and the searchers start 50m from the boundary of their first 

sweep. The following assumptions are made to investigate this scenario analytically: 

• The searchers move at constant velocity and turn instantly. 

• The tanks move at constant velocity and their movement is such that they 
are equally likely to be at any point in the area at any time. 
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• If a searcher sweeps a lane on one pass then by the time the next pass 
occurs, a tank is equally likely to be in either lane (this assumption is 
made based on the speed of the tanks and their random movement). 

• A tanks movement is independent from other tanks and from the 
searchers.  

• The sensor has a perfect sweep width of 100m and the searcher can 
exactly position itself between sweeps.   

The task of the analysis is to determine the expected value and variance of the 

time to detect each of the four tanks, and to determine the same moments for the total 

time until all four tanks are detected. This is approached by considering the inter-

detection times for each tank.  

Initially the problem is simplified by determining the solution for a single tank. 

The expected time to detect a single tank can be determined from the expected number of 

sweeps and the expected time to detect a tank during a sweep. The probability of 

detecting a single tank on a given sweep is 0.5. The probability of detecting it on the next 

sweep is 0.25 (probability of not detecting on the first sweep multiplied by the probability 

of detecting on the next sweep 0.5 x 0.5). It is recognized that the number of sweeps are 

geometric with probability 0.5. The expected number of sweeps is equal to 2. 

The time taken for one sweep is equal to the distance (5000m) divided by the 

velocity (30 m/s), or 166.67 s. As the tanks are equally likely to be found at any point in 

the sweep the expected time to detect in a sweep is uniformly distributed with a mean of 

83.33s. The overall expected time to detect is equal to the time taken for one less than the 

expected number of sweeps, plus the expected time to detect on the final sweep. In 

addition 3.33s for the inter sweep times must be added. The resultant expected time to 

detect a single tank is 253.3 s.  

Rather than explicitly calculating the variance we can make the assumption that 

the time to detection is roughly exponential. The lack of memory property of the 

geometric distribution allows this. Using the exponential assumption for time to detect 

the detection rate is 1/253.3 = 0.003947. The rate of detection of the first of four tanks 

(T1) is therefore 1/(4 x 0.00394) . Because of the memory less property of the 

exponential distribution the rate of detection for first of the remaining three tanks (T2) is 
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1/(3*0.003947) and so on for the rate for T3 and T4. This produces the expected values 

for T1 through T4 in the table below. With the exponential assumption the standard 

deviation is the same as the expected value. The values T1 to T4 are refereed to 

collectively as inter-detection times (even though T1 is the time until the first detection). 

 

E [T1]  E [T2]  E [T3]  E [T4]  

63.3s 84.4s 126.7s 253.3s 
 

Table 11.   Expected detection times for each tank using exhaustive search 
 

To calculate the moments associated with the total time to detection we continue 

using the assumption that the inter-detection times are independently distributed 

according to the exponential distribution. The distribution of the total time to detection is 

the sum of the four exponential inter-detection times. It can alternatively be thought of as 

the maximum of four independent exponential variables with rate parameter equal to the 

underlying detection rate of a single target. Using the former reasoning, and the expected 

values and variances given above, the expected value for the total time to detect is 527.8s 

and the standard deviation is 302.3s. 

 

2. Experimental Results 

Three exhaustive search experiments were conducted. In all cases Search 

Behavior 1 was used. The performance of the searchers was recorded with each of the 

tank behaviors. A summary of the results for each experiment is shown in the tables 

below. Means, standard deviations and standard errors of the means were determined 

using traditional statistical methods. Standard errors of standard deviations were 

determined using the bootstrap function in the statistical package S-Plus with default 

parameters (1000 replications) 

Experiment A used Search Behavior 1 and Tank Behavior 1. This experiment is 

expected to most closely represent a real exhaustive search scenario where the targets 
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location probability is uniformly distributed over the area. The results of experiment A 

are summarized in the table below. Experiment A consisted of 9848 runs.  

 

 T1 T2 T3 T4 Total 
Mean 67.2 78.5 117.8 241.3 504.7 
Std Error (Mean) 0.6 0.8 1.2 2.5 2.9 

Std Deviation 58.1 79.1 121.6 244.5 290.4 
Std Error (Std Deviation) 1.0 1.3 1.8 3.9 3.6 
 

Table 12.   Experiment A results 
 
 

Quantile-Quantile exponential plots were used for visual comparison of the 

exponential assumption of inter-detection times. These plots are shown in the Figure 

below. It is observed that the exponential assumption holds relatively well for T2 through 

T4. It holds less well for T1 however is still relatively good.  
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Figure 6.   Plots to check the exponential assumption for experiment A 
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Experiment B used Search Behavior 1 and Tank Behavior 2. The results are 

summarized in the table below. Experiment B consisted of 4277 runs. 

 T1 T2 T3 T4 Total 
Mean 66.5 86.9 113.7 233.9 501.0 
Std Error (Mean) 1.0 1.1 1.7 3.8 4.5 
Std Deviation 65.7 74.5 109.3 247.8 294.2 
Std Error (Std Deviation) 1.5 1.6 3.0 5.7 5.7 
 

Table 13.   Experiment B results 
 

Experiment C used Search Behavior 1 and Tank Behavior 3. The results are 

summarized in the table below. Experiment C consisted of 1065 runs. 

 T1 T2 T3 T4 Total 
Mean 86.5 51.0 127.0 252.1 516.7 
Std Error (Mean) 1.6 3.0 4.8 8.2 9.0 
Std Deviation 52.8 99.5 156.8 266.2 293.2 
Std Error (Std Deviation) 1.8 4.0 6.0 10.2 12.3 
 

Table 14.   Experiment C results 
 

3. Discussion 

The results suggest that Experiment A and Experiment B are a reasonable 

approximation to the analytical results determined for exhaustive search. The confidence 

intervals for the mean inter-detection times observed do not generally fall over the mean 

inter-detection time calculated. In general observed inter-detection times are slightly less 

than that calculation, however they are relatively close. There are a number of reasons 

why observed detections would occur sooner than the analytical predictions. The 

detection assumes a sweep width about a point. In reality the sensor is sensing in front of 

the searchers position and detection may occur before the searcher reaches the targets 

location. In addition the search effort between sweeps is not taken into account in the 

analytical result.  

The exponential assumption for inter-detection holds relatively well for 

experiments A and B.  In addition to the relationship between the moments we observe 

appropriate QQ-plots. This is especially for T2 through T4 and the total detection time. 

The observations for T1 do not meet the exponential assumption quite as well. This result 

is perhaps due to the start conditions in each experiment.  
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In addition the predicted expected moments for total detection time agree 

reasonably well with those observed. This is shown in the figure below.  
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Figure 7.   Predicted and observed total detection times for exhaustive search 

 

The results from Experiment C show that clumping the tanks together increased 

the value of T1 however decreased the value for T2. This makes intuitive sense. Because 

the tanks locations are dependant and close together, the conditional probability of 

finding a second tank is dependant on whether one has already been found on that sweep.  

The exhaustive search pattern provides the best theoretical coverage of the search 

area. For an exhaustive search to be effective searchers must coordinate their efforts 

fully. When a central controller can direct the movement of every individual this is 

possible. Due to their size MAV’s may not have the communication capabilities to 

receive directions from a central controller. The random search scenario is developed to 

provide a base case assuming that the MAV’s have no communication capability and 

proceed on a purely random search.  
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C. RANDOM SEARCH 
 
1. Analytical Results 
 

For the random search scenarios the MAV’s move in a random manner such that 

they covered each portion of the search area evenly. The following assumptions are made 

to investigate the random search scenario analytically: 

• The searchers move at constant velocity and turn instantly. 

• The tanks move at constant velocity and their movement is such that they 
are equally likely to be at any point in the area at any time. 

• The tanks movement is independent from other tanks and from the 
searchers.  

• The searcher sensor has a perfect sweep width of 100m. 

The analytical argument for a random search is well documented in the literature 

[Naval Ops Analysis]. Detection times follow the exponential distribution with rate (W x 

v)/A where W is the sweep width, v is the searcher velocity and A is the area to be 

searched.  

The search rate for a single target is determined first. The sweep width for all 25 

searchers is 2500m. Traveling at velocity 30 m/s and covering area 5000 x 5000 m the 

predicted rate of detection for a single target is 0.003. A similar argument to that made 

for the exhaustive search for determining the inter-detection times can be made with 

random search. The expected inter-detection times are shown in the table below. 

 

E [T1] E [T2] E [T3] E [T4] 

83.3 111.1 166.7 333.3 

 
Table 15.   Expected detection times for each tank using random search 

 

The moments for the total time of detection are determined in a similar manner to 

that for the exhaustive search. The expected value for the total time to detect is 694.4s 

and the standard deviation is 397.7s. 
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2. Experimental Results 

Four experiments were conducted using searchers moving at random. The general 

set up of the scenario was the same as for the exhaustive search experiments, however the 

movement of the searchers followed the random waypoint generation method described 

in Appendix B.  

Experiment D used Search Behavior 3 and Tank Behavior 1. The searchers start 

internally and search randomly, and the tanks movement is independent and random. This 

experiment is as close as possible to the scenario investigated analytically. The results are 

summarized in the table below. A total of 3341 runs were made for this experiment. 

 

 T1 T2 T3 T4 Total 
Mean 80.7 109.1 164.8 323.1 677.7 
Std Error (Mean) 1.5 1.9 2.8 5.4 6.6 
Std Deviation 84.2 108.9 161.4 313.1 381.0 
Std Error (Std Deviation) 1.9 3.0 3.5 6.9 7.1 
 

Table 16.   Experiment D results 
 

A slight variation on the start location of the searchers was made for Experiment 

E. This experiment used Search Behavior 2 and Tank Behavior 1. The searchers start on 

the boundary and search randomly, and the tanks movement is independent and random. 

The results are summarized in the table below. A total of 2725 runs were made for this 

experiment. 

 

 T1 T2 T3 T4 Total 
Mean 79.9 102.5 162.7 332.4 677.4 
Std Error (Mean) 1.5 2.1 3.1 6.6 7.7 
Std Deviation 78.8 107.7 161.4 342.6 401.4 
Std Error (Std Deviation) 2.3 3.0 3.9 10.1 9.5 
 

Table 17.   Experiment E results 
 

Experiment F Search Behavior 2 and Tank Behavior 2. The searchers start on the 

boundary and search randomly, and the tanks movement is random in an assigned 
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quadrant. The results are summarized in the table below. A total of 5390 runs were made 

for this experiment. 

 

 T1 T2 T3 T4 Total 
Mean 81.2 109.9 171.5 336.2 698.8 
Std Error (Mean) 1.1 1.5 2.3 4.7 5.6 
Std Deviation 80.9 109.9 170.3 343.7 409.8 
Std Error (Std Deviation) 1.5 2.0 3.8 9.2 10.9 

Table 18.   Experiment F results 
 

Experiment G used Search Behavior 2 and Tank Behavior 3. The searchers start 

on the boundary and search randomly, and the tanks move together in a group. The 

results are summarized in the table below. A total of 1718 runs were made for this 

experiment. 

 

 T1 T2 T3 T4 Total 
Mean 130.1 83.3 136.4 280.9 630.7 
Std Error (Mean) 3.1 3.3 4.6 7.9 10.2 
Std Deviation 129.2 135.8 189.6 328.0 422.0 
Std Error (Std Deviation) 4.3 5.2 6.7 11.4 10.6 
 

Table 19.   Experiment G results 
 

3. Discussion 

The results for experiments D, E and F agree with the results predicted 

analytically. In all cases the exponential assumption for inter-detection times holds. 

Comparing the relationship between the observed mean and standard deviation confirmed 

this. QQ-Plots were also used to check the exponential assumption.  

The inter-detection times are slightly less than predicted by analysis. The 

searchers are finding the targets a little earlier than predicted by the analysis. If a target is 

directly in a searchers path the sensor will detect the target about 1.7 seconds prior to the 

sensor being directly over the target. In addition it is expected there is some increased 

search effect at the edge. These effects were not taken into account for the analytical 

determination of the expected moments. The slightly better inter-detection times can be 

explained with these effects.  
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The results for experiment G represent a significant departure from the 

exponential inter-detection times. By comparing the observed moments and the QQ plot 

in the figure below T1 looks to be exponential, however the expected detection time is 

much greater than that predicted by theory (~130s observed compared to ~83s predicted). 

T2 to T4 are not exponential. It is expected that the cause of this departure is a violation 

of the independence assumption for the tanks movement.   
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Figure 8.   QQ-plot of observed values for T1  

 

In experiment G the tanks are following each other at about 100 m. The problem 

to find the first tank is really to find the group of tanks, however the target is now no 

longer a point, rather it is the distribution of the group. This effectively increases the 

theoretical sweep width of the sensor. An exact calculation of the T1 based on this 

increased theoretical sweep width is not presented. Working backwards from the 

observed detection rate the sweep width is about 250 m. This seems to be about what 

would be expected for the theoretical sweep width. Once the first tank is found it is much 

more likely to find the second and so on for the third and fourth. This is most likely the 

cause of the departure for the experimental assumption for T2, T3 and T4. 

The total detection times for all random search experiments are shown in the 

figure below. Again experiment D, E and F match what is predicted by theory.  
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Figure 9.   Predicted and observed total detection times for random search 

 

It is interesting that the results of experiment G are close to that predicted by the 

exponential theory even though the observed inter-detection times were not exponential. 

There is perhaps some limiting behavior as the number of targets in the group expands. It 

is expected that the group separation is important in determining the departure from the 

exponential assumption. Further work could investigate the effect of group separation on 

exponential inter-detection times and the overall detection time.  

Experiments F and G are used as a basis to determine more complex behaviors. 

These more complex experiments are discussed in the next section.  

 

D. MORE COMPLEX SEARCH BEHAVIORS 

 

1. Experiment Design 

The more complex search behaviors all have the random search behavior as a 

base. Searchers roughly follow the random movement algorithm of Appendix B. Most 

movement is by accelerating to a waypoint with a capped velocity. Movement is 

modified by adding acceleration components in the direction of (or away from) sensed 

tanks, other MAV’s, and tanks sensed by other MAV’s.  
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Experiments H through K build on the base provided by experiment G. In all 

those cases the tanks are using the same behavior (following a lead tank). Experiments L 

through O build on experiment F. In those cases the tanks are moving in separate 

quadrants of the search area. 

The aim of the experiments conducted with more complex search behaviors was 

to determine the effect of behavioral control factors on swarm performance. In total eight 

experiments are reported here. The table below provides a summary of the configuration 

of targets and searchers for each experiment.  

Experiment Target 

Configuration 

Searcher 

Configuration 

Factors to 

measure 

Experiment 

Design 

H Tank Behavior 2 Search Behavior 4 wp, dist Grid – four 

levels 

I Tank Behavior 2 Search Behavior 5 wp, dist, tank Grid  - four 

levels 

J Tank Behavior 2 Search Behavior 6 wp, dist, tank, 

near 

Latin 

Hypercube 

K Tank Behavior 2 Search Behavior 7 wp, dist, tank, 

near, found 

Latin 

Hypercube 

L Tank Behavior 3 Search Behavior 4 wp, dist Grid – four 

levels 

M Tank Behavior 3 Search Behavior 5 wp, dist, tank Grid  - four 

levels 

N Tank Behavior 3 Search Behavior 6 wp, dist, tank, 

near 

Latin 

Hypercube 

O Tank Behavior 3 Search Behavior 7 wp, dist, tank, 

near, found 

Latin 

Hypercube 

 
Table 20.   Target and Searcher Configuration for Complex Experiments 
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The design of each experiment was chosen to ensure a good coverage of the 

response surface, while ensuring that each design point would have enough simulation 

runs to get an accurate picture of the response at that point.  

A summary of the meaning for each of the factors is given in the table below. 

Note that the factors related to acceleration control property change suggestions for the 

acceleration property. The property change suggestions are added (using standard vector 

addition) and then the resultant vector restricted by the magnitude bounds placed on the 

acceleration property (<30). 

 
Factor Abbreviation Meaning Level Range 
accToWP wp The magnitude of acceleration 

towards the current way point 
(3, 20) 

wpDistance dist The distance from the current way 
point where it is discarded and 
another chosen using the 
algorithm described in Appendix 
B 

(10, 200) 

accToTank tank The magnitude of acceleration 
towards the closest tank that is 
currently being sensed 

(-100, 100) 

accToNear near The magnitude of acceleration 
towards each MAV currently 
being sensed 

(-80, 20) 

accToFound found The magnitude of acceleration 
towards each tank that is being 
sensed by each “near” tank.  

(-100,100) 

 
Table 21.   Summary of factors that are considered 

 

The range of the factor levels described above were chosen by trial and error by 

visually determining the effect of each factor. Here the visual display associated with 

MARSS was particularly useful. Note that the much larger magnitude levels for tank, 

near, and found, when compared to wp, were effective at overcoming any acceleration 

towards the current waypoint without the need for regulators.  
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2. Experimental Results 

Each of the experiment described above were run overnight on a Pentium 4 

computer. The number of runs for each experiment is given in the table below. Note that 

this is the raw number of runs, not the number of “grids” or “cubes”. 

 

Experiment H I  J K L M N O 

Number of Runs 3653 4876 902 1207 5274 5026 1189 1587 

 
Table 22.   Number of runs for each complex experiment 

 

The aim of the analysis is to identify factors that contribute to the response. 

Initially this was attempted using classic linear regression models. While linear 

regression techniques provided some information there were limitations to this analysis. 

These included the following: 

• The assumptions of normal residuals and homoscedasticity do not hold for 
the nature of the response observed. By transforming the response (using 
log(y) or y^1/3 for example) the residuals can be made to look more 
normal. 

• In many cases the response was not linear. In particular the response was 
stepped for particular predictor variables. In such cases even a polynomial 
regression model could not capture the observed means.  

• A linear regression model does not readily produce output that helps 
identify breakpoints in the levels for a particular factor.  

Examples of the complexity of the response are given in the figure below for 

experiment J. A boxplot is given for each level by factor. The complexity is particularly 

apparent for the factors tank and near.  
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Figure 10.   Response for Experiment J by Factor 

 

Other experiments exhibit a response with similar complexity. What are not 

shown in the figure above are interactions between the various factors. In addition to this 

being hard to represent, interactions are deliberately confounded in the Latin hypercube 

design in order to better understand the main effects.  

It is easily observed from the figure above that a model assuming linearity for 

tank or near would not appropriately find the step in tank between –33 and 33, or the dip 

in near at around –13. Indeed even a third order polynomial model may not accurately be 

able to describe the response. 

After trying many techniques for describing the data a Regression Tree proved to 

be the most interpretable, and the best technique to give the information sought regarding 

important factors. The “tree” function in S-Plus was used for this analysis. A workflow 

was created to treat the output from all experiments in a similar way. 

Initial a tree is created that attempts to predict total from all other factors. The tree 

is cross validated using the “cv.tree” function, and the size of tree with the minimum 
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deviance determined. The tree is pruned using the “prune.tree” function to the appropriate 

size, and the leaves ordered so the minimum response is on the left. The tree for 

experiment J is shown in the figure below.  
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tank<0

near<-63.3333

tank<66.6667

tank<0

 264.4
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1254.0 1606.0

1731.0 2609.0

 
Figure 11.   Regression tree for Experiment J 

The tree above predicts that if near is less than 3.3 and tank < 0 then the observed 

mean response will be 264.4. By filtering the simulation observations for this experiment 

to only those data points that meet these criteria the following summary statistics are 

observed. Count = 292, mean = 264.4 (as predicted by the tree), standard deviation = 

258.4, and the standard error of the mean  = 15.0.  

The use of regression tree has assumptions of normal residuals and 

homoscedasticity just like linear regression. Although these assumptions are not met any 

better for the regression tree they are much less important to the outcome. Again by 

taking the log of the response these assumptions can be met slightly better. However, 

doing so has a cost of interpretability and the leaves of the tree no longer match with the 

observed values.  

Using the procedure described, regression trees were constructed for each 

experiment. These trees are shown in the figure below. 
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Figure 12.   Regression Trees for all Complex Experiments 
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Summary statistics were generated for each data point that met the tree conditions 

pertaining to the lowest total (the far left leaf on each of the above trees). These statistics 

are summarized in the table below.  

Experiment H I J K 
Factor Levels wp > 5.8 tank < 0 near < 3.3 

tank < 0 
tank < -25 
near < 7.5 

Number of Runs 
That Satisfy 

2739 2448 297 370 

Mean Total 
Time 

579.7 220.2 264.4 290.5 

Std Error of the 
Mean 

7.6 4.6 15.0 15.6 

Standard 
Deviation of 
Total Time 

399.5 227.8 258.4 300.0 

Experiment L M N O 
Factor Levels wp > 17.6 

dist > 168 
wp > 11.5 near < 3.3 

tank < 0 
wp > 5.8 
41.7<dist<168.3

near < 7.5 
dist > 33.75 

Number of Runs 
That Satisfy 

329 2512 151 1037 

Mean Total 
Time 

593.4 611.2 496.5 634.0 

Std Error of the 
Mean 

18.0 7.2 21.0 11.1 

Standard 
Deviation of 
Total Time 

325.8 358.7 258.2 356.8 

 

3. Discussion 

The results from Experiments H through K will be considered first. In these cases 

the searchers were looking for four tanks that were moving in a group. Experiment H was 

designed to closely replicate experiment G. The only factors controlling movement were 

the magnitude of acceleration towards the next waypoint (wp) and the distance from that 

waypoint where another would be selected (dist). The resultant behavior has searchers 

executing a smooth turn starting before the boundary.  

The regression tree for experiment H suggests that the only significant factor that 

contributes to the response is wp. In this case if wp is greater than 5.8 the mean of total 
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time to detect all four tanks is observed as about 580. This represents about 10% decrease 

in detection time when compared to experiment G (mean = 630), however the search is 

not as good as the exhaustive search in experiment C (mean = 516). This decrease in 

detection time may be explained by searcher no longer wasting search effort at the 

boundary. Rather, the level for wp controls movement in such a way that a searchers 

search cone merely touches the boundary before proceeding to the next waypoint.  

For experiment I searchers were given the ability to accelerate towards or away 

from the closest tank they observe. The factor controlling this magnitude (tank) 

dominated the response. By accelerating away from a tank (i.e. tank <0) the response was 

reduced from the pure random search of experiment G by around 65%. By accelerating 

away from a tank the MAV slows and climbs. This has the effect of both increasing the 

effective search radius, and of remaining in the general area of the observed tank for 

longer. Since in this scenario the tanks are moving together it is obvious that this 

increases the chance of finding more tanks. The only other split in the regression tree 

again confirms that the higher the acceleration towards a way point the better.  

Experiment J built on experiment I by giving searchers the ability to accelerate 

towards or away from other searchers (within about a 500m radius). It was expected that 

by doing this searchers would maintain a separation so that they more effectively covered 

the search area. Instead it was found that if searchers accelerated towards each other at 

all, detection time drastically increased. This, combined with any acceleration towards a 

found tank, confounded many of the observed results. The resultant total detection time 

still represents an achievement over the pure random search, however is not as good as 

that observed for experiment I.  

Experiment K allows the searchers to accelerate towards or away from all tanks 

found by another searcher (again limited to searchers < 500m away). Again low values of 

near and tank dominated the response. Any high values of these factors confounded the 

response. The resultant total detection time is similar, although a little higher, to the 

response that was observed for experiment J.  

Over all of the experiments H through K the most important factor at improving 

detection time was the acceleration away from a detected tank. For the latter two 
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experiments additional factors did not improve the total detection time. It is expected that 

if the factor levels for near and found were constrained to reasonable ranges that the 

results may be more telling.  

Experiments L through O had tanks moving randomly in separate quadrants. 

These experiments most closely match experiment F. Again with just wp and dist 

experiment L showed a significant improvement (around 15%) over the pure random 

search of experiment F. This confirmed the result obtained from experiment H that the 

greater the magnitude of acceleration towards the current way point, the better the overall 

searcher performance. It appears from experiment M that the addition of the factor tank 

does not significantly affect the performance. The deliberate geographic dispersal of the 

tanks explains why the factor tank has does not have the same effect as for experiment I.  

The inclusion of a searcher’s ability to react to other tanks does appear to improve 

performance in experiment N. A complex mix of factor levels produces a performance 

that is on par with the exhaustive search of experiment C. However, the small number of 

observations that meet the complex factor level criteria makes this result somewhat 

suspect. Adding the factor found in experiment O messes everything up and produces the 

worst response from the experiments L through O.  

In summary, experiments L through O show that again near is the dominant factor 

where it is present. The results suggest that it is possible to approach the exhaustive 

search performance by having a complex movement mechanism based on accelerations 

such as those considered.  

 

E. SUMMARY OF RESULTS 

 

The basic scenarios (experiments A through G) showed that the search 

implemented in MARSS agrees with analytical results. This agreement validates the 

MAV search scenario that was implemented. The results provided a base to compare the 

complex scenarios against.  
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The results from the complex scenarios were surprising and insightful. The 

increased search performance based just on the ability of searchers to turn before the 

boundary of the search area was surprising. Also surprising was the lack of increased 

performance based on the factors near and found. A better range for the levels of tank, 

near and found could have been made where these factors were present. Only negative 

values of tank and near should have been considered. The appropriate levels for found 

are not clear.  

 

F.  FUTURE WORK 

 

Future work with the MAV scenario could include the following: 

• Rerunning the current experiments at more appropriate factor levels.  

• The nature of the tank sensor made the current scenario artificial in that 
for the basic scenarios the MAV’s were not flying at optimum height to 
maximize the sensor sweep width. A more complex sensor that was not a 
cookie cutter and had an optimum sweep width of 100 m at 50 height 
would be useful, especially if the nature of the sensor was such that the 
sweep with decreased with any change in height.  

• A more realistic consideration of the communication mechanism to 
communicate location and sensed tank information between searchers.  
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VIII.    CONCLUSIONS  

A. USING MARSS TO MODEL ROBOT SWARMS 

 

The primary aim of the work reported in this thesis was to develop, implement, 

and test a model for investigating the behavior of swarms of robots. The construction of 

MARSS developed and implemented such a model. MARSS is a sophisticated simulation 

model-building tool that can be used by analysts to understand the contribution that 

individual behavioral characteristics make to group performance.  

The modeling methodology described in this thesis uses ideas and technologies 

from agent-based simulation, discrete-event simulation, stochastic models, swarming 

theory, search theory, design of experiments, and statistics. No proper subset of these 

technologies is adequate to address the modeling questions. The application of all of 

these techniques to the broad problem of understanding the behavior of robot swarms was 

particularly effective. 

The modeling of a robot swarm scenario in MARSS starts with defining the 

problem and understanding the system that is to be studied. Properties of agents must be 

defined and understood. Each agent’s ability to affect its destiny by controlling its state 

must be defined. 

The sensing process models agent interaction. The aim of the sensing model in 

MARSS is to transfer information about one agent’s state to another. It consists of 

modeling the physical process involved with transferring energy through the 

environment. Agents emit emissions in particular bands. These emissions reside in the 

ether. Agents have sensors that detect emissions in the ether. Appropriate emissions are 

sensed if their signal strength has not been attenuated below the sensitivity of the sensor. 

With the sensing of an emission, information about the originator is transferred to the 

owner of the sensor. This information, together with some part of the agent’s own state, 

forms the inner environment.  
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The behavioral process models agent actions. Functions are executed on the inner 

environment and the output applied to the agent’s properties within their degrees of 

freedom. Factors control the operations of the behavioral function. This will cause the 

agent to act in a specific way.  

The actions of many agents produce an emergent group behavior. This behavior is 

measured and recorded, together with the factors that produce that response. Experiments 

are designed to get a good spread of factor levels over the response surface. Statistics, in 

particular regression trees, are then used to understand what factors contributed to the 

response.  

It would be nice to say that the modeling process described in this thesis ended 

there. In reality the results from this process are then used to refine the simulation model, 

redesign the experiment, and better understand the operation of the system being 

investigated. MARSS is just one tooth in the cog that helps to grind this process towards 

a better understanding of robot swarms. It does however represent a capability that did 

not previously exist.  

 

B. MAV SCENARIO 
 

MARSS and the associated modeling method were tested on a search scenario 

involving Micro Air Vehicles. In addition to testing MARSS this provided an opportunity 

to answer questions about the behavior of a conceptual system.  

The results from basic MAV search scenarios implemented in MARSS were 

validated against analytical results for exhaustive and random search for a moving target. 

In both cases the results from MARSS matched those determined analytically. This 

showed that the movement and sensing models in MARSS were working as designed.  

For more complex scenarios, searchers were given more involved behavior that 

allowed them to react to observed targets, each other, and targets observed by fellow 

searchers. The searchers were conducting a random search with these modifications. 

Summing the components of acceleration in different directions controlled movement. It 

was found that just by using the movement mechanism involving accelerating towards 
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the current way point that search performance improved over the pure random search by 

at least 10% regardless of the configuration of the targets.  

When targets were moving in a group the most important factor affecting good 

search performance was acceleration away from an observed target. This was an artificial 

result based on the configuration of the sensor. Acceleration away from other searchers’, 

and towards targets observed by other agents was found to have only a slight affect on 

performance. This was surprising, it was expected that reaction to other searchers 

location would produce a significant increase in performance, perhaps even approaching 

exhaustive search.  

The research question addressed for the MAV scenario was “How should 

individual agents behave to produce a desired swarm behavior?” This question was 

answered for the MAV scenario by determining what factor levels contribute to good 

search performance. 

Insight was provided into how the level of swarm performance is dependant on 

the level of communication by investigating the effects of being able to react to fellow 

searchers, and to targets found by fellow searchers. The results of this thesis suggest that 

the sharing of this information does not have a marked impact on the best swarm 

performance observed. Perhaps a much more interesting result is that swarm performance 

can be drastically reduced by reacting to that information in the wrong way.  

The difference in swarm performance between distributed and centralized swarm 

control was addressed by comparing the exhaustive search results to the distributed 

control of the complex scenarios. When targets were moving in a group distributed 

control appeared to be much better, although this result is somewhat artificial due to the 

sensor configuration. When targets were spread over the search area distributed control 

did not achieve as well as central control. However, the increase in performance observed 

does suggest that central control may be possible. 

 

C.  FUTURE WORK 
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Many references to future work have been made throughout this thesis. Future 

research could focus on many areas. The MARSS model could be enhanced in almost all 

areas. Further work on the particular MAV scenario could involve modifications of the 

implementation in MARSS to more closely represent real vehicles.  

The primary aim of the work reported in this thesis was to develop a process for 

modeling swarms of robots. Any researchers that are considering investigating groups of 

robots will have the MARSS tool available from 

http://diana.or.nps.navy.mil/~ajdickie/marss.  
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 APPENDIX A 

This appendix is a visual depiction of the MARSS simulation tool. Each figure 

contains a description of the functionality that is provided by that part of MARSS.  

 

 
 

Figure 13.   The Main View 
  

This is the standard view provided by MARSS. The top panel contains controls 

for starting, pausing, stopping and resetting the simulation. The 2D and 3D view can be 

turned on and off. The “ping” delta and milliseconds per simulation time can be set. 

Together these controls adjust the speed of the simulation and the speed the model runs 

at. The simulation status shows what MARSS is doing. The random seed options give a 

runtime control of the seed to use when the simulation is reset between runs.  
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Figure 14.   The State of the Simulation 
 

This view provides information on the state of the simulation. While it can be 

used dynamically it is best to pause the simulation in the main view first. The value of 

each entity’s properties can be viewed in the top center, and the information that an entity 

is sensing can be view in the top right. The current entity can be selected from the drop 

down list, by double clicking in the 2D view, or by clicking on the entity in the 3D view. 

Selecting an entity centers both views on that entity and shows the entity properties in the 

top entity panel. Just below the entity selection drop down list is a text area that displays 

the factor levels for that entity if they are being modeled.  
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Figure 15.   The 3D View 
 

The 3D view is good for visually determining state parameters such as location 

and lateral acceleration. A VRML file that may be associated with an entity controls the 

display of that entity in the 3D view. In the picture above we also see the overlay in the 

top left corner that provides more information about the current view. The background 

displayed here is the “sky” background. Backgrounds are selectable dynamically.  
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Figure 16.   More 3D View 
 

In this 3D display we see the grid lines drawn. The grid is a 100m grid at height 0 

that is drawn for 100,000 m in each direction from the origin. Note the “map” displayed 

here is a picture of sand. Any .jpg image may be used as a map to base a scenario on. The 

image is drawn at height 0 in all cases.  
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Figure 17.   And More 3D View 
 

This display shows an exhaustive search scenario with the searchers looking for 

tanks. The search cones are part of the VRML description of an entity that replicates 

effect of a sensor in the model. The 3D view can be controlled using the arrow keys and 

the mouse. The help menu provides more information on the function of the controls.  
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Figure 18.   2D View 
 

The 2D displays the same map as the 3D display. All entities are drawn as a small 

circle with a line indicating the orientation of the entity. The currently selected entity is 

displayed in green with all other entities being displayed as red. Holding the mouse over 

the display gives the user feedback on the coordinates of that location. The display can be 

zoomed and translated using mouse controls. More details of the controls in this display 

can be found in the help.  
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Figure 19.   Text Mode 
 

After debugging and face validating the scenario using the graphical mode the 

simulation can be switched to text mode for multiple runs using the mode menu. 

Although most output data is directed to a file, this mode can provide further text output. 

The same controls over the function of the model are provided in both text and graphical 

mode. 

 

 

 
 
 

Figure 20.   Text Mode Options 
 

The output menu may be used to direct certain simulation output to the text area. 

This includes the verbose Simkit output. In addition to use for further debugging this 

mode allows the user a simple mechanism to capture output.  
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Figure 21.   XML Scenario Design 
 

Scenarios for MARSS may be fully defined in XML. This screenshot is a picture 

of the XML editor that is built into Sun Microsystems Forte for Java. Any XML editor 

may be used. The use of XML allows for easy creation of scenarios from previous ones, 

and the sharing of scenarios between machines. Users can define sensors, behaviors and 

other elements of the simulation that are user defined java classes. These classes are 

loaded dynamically at runtime.  
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APPENDIX B -UNIFORM RANDOM SEARCH OF A 
RECTANGULAR AREA 

BACKGROUND 

One assumption encountered in the development of random search theory is that 

the probability of a searcher being at any location in a search area is equal. [Wagner, 

Mylander and Sanders 1998] Similar assumptions may be made in the search for a 

moving target. A practical movement strategy that resulted in such a uniform distribution 

of location probability is required in order to compare simulation and analytical results. A 

rectangular area is particularity useful as such areas can be easily tiled and are commonly 

encountered in real searches. 

Although a real search may consist of many targets and searchers, the simplified 

problem is to consider the case for a single mover. In this case a mover is traveling at 

constant velocity from waypoint to waypoint. The waypoints are to be generated using 

some algorithm. 

 

AIM 

The aim is to create an algorithm that generates waypoints in an area such that a 

mover traveling between such waypoints is equally likely to be at any point in the area at 

any time. 

 

PREVIOUS WORK 

The problem of creating a movement strategy to ensure uniform coverage of a 

region has been previously considered. Most approaches focus on a movement strategy 

where the mover travels from point to point on the boundary of the region. The task is to 

determine the reflection angle from the boundary. Lalley and Robbins considered the 

case for search of a circular disk [Lalley and Robbins 1989]. The article describes a 

procedure for uniform coverage of a circular disk. In this case a searcher moves between 

boundaries along chords. When the searcher must decide what point on the boundary to 
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head towards an angle q between 0 and 180 degrees should be generated randomly 

according to the following: 

Prob(q) = 1/2 sin(q) dq 

where q measures the angle from the tangent to the boundary at the current point 

and the chord to be taken. Lalley and Robbins proved that using this procedure the disk 

would be covered uniformly. This kind of reflection is known as diffuse reflection. 

 Gage generalized the work of Lalley and Robbins to other convex 

regions[Gage1]. His effort provides a good summary of work related to this problem with 

appropriate references. In particular he stated that the probability of reflecting from the 

edge of a region in a particular direction should be proportional to the distance to the 

boundary in that direction. This is developed by asserting that the effort attributed to a 

particular area between two chords to an opposing boundary should be proportional to 

that area. This algorithm was implemented for a rectangular region [Gage 2]. He stated 

that for a circular region the diffuse reflection algorithm of Lalley and Robbins agrees 

with his generalization.  

 

A SIMPLE ALGORITHM 

In real search problems a more practical approach is to determine a sequence of 

way points rather than reflection angles. The problem is considered by assuming the 

searcher is located on the boundary and then determining where on the opposing three 

boundaries the next way point should be. According to the method proposed by Gage the 

probability of proceeding to a point on one of the opposing boundaries should be 

proportional to the distance to that point. For a rectangular region this means that the 

distribution of reflection angles is different from every point (although symmetric about 

the center of a boundary). Therefore no simple formula can be determined for the 

reflection angle.  

Although there is no simple formula for determining the reflection angle it is 

nonetheless possible to determine the next waypoint using a simple algorithm. This 

algorithm relies on the fact that each portion of area should be transited with equal 
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probability. The algorithm presented can be generalized for any convex area, however its 

implementation is particularly efficient for a rectangular region. The algorithm is given 

below. 

Algorithm for uniform distribution of search effort over a convex area 

1. Assume that the mover is located on the boundary of the area. 
 
2. Generate a continuous uniform random variable between 0 and the area of the 
region being considered. 
 
3. Pick the next way point on the boundary such that the area of the region to the left 
of the chord from the searchers current location to the way point is equal to the random 
variable.  
 
4. Do it again. 

 

DISCUSSION 

The discussion of this algorithm is restricted to a rectangular region, however 

provided the geometric calculations or integrals can be computed, it can be generalized to 

other convex regions. This algorithm is particularly attractive for rectangular regions 

since the area can be determined using basic geometry without the need for evaluating 

transcendental functions. Note that it does not produce an angle to reflect at, rather a way 

point to move towards. This is more attractive for operational searchers to use in 

movement management systems. 

The algorithm assumes that the searcher is located on a boundary at the start, 

however the only requirement for continuing uniform coverage is that from the mover’s 

current location it can move in directions that take it through every point in the region. 

This means that the mover may start at an internal point and move to a boundary for the 

first move. In fact if we want the mover’s location to be uniform from time zero then we 

should first place the mover uniformly and move it to a boundary point. The 

determination of what point on the boundary to move to may be made using a similar 

algorithm.  

The practical implementation of the area calculation in code involves a mover 

keeping track of which of the four edges it is on and how far it is to each of the closest 
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two corners along the current edge in each direction. Using this information with many 

conditional statements, the mover determines what edge to move to and how far to each 

of the corners from that edge. This detail will not be presented further.  

It is intuitively easy to understand this approach when we consider the discrete 

case. Imagine dividing the area up into N equal area wedges from our current location. 

Next roll an N sided die to determine which wedge to head along. By doing this each 

portion of area is approximately (only because it is discrete) equally likely to be covered.  

To understand the continuous version of this algorithm consider that as N 

approaches infinity the area of the wedges approaches zero and the area of the wedge 

becomes directly proportional to its length. This is the same as the result by Gage that the 

probability of proceeding in a particular direction is proportional to the distance to the 

boundary in that direction.  

There are a few consequences of this algorithm. It seems that it is impossible to 

create a random movement strategy with internal way points and achieve uniform 

coverage on a per chord basis. Unless a searcher considers moving to the boundary at the 

end of a chord once that chord is chosen, different portions of the area under the chord 

will have different probabilities of being covered. This does not agree with the idea that 

by traveling along a chord each portion of area is equally likely to be covered.  

Another consequence is that the distribution of angle of reflection is dependant on 

where a searcher is on the boundary. For the circular disk situation considered by Lalley 

and Robbins this is not the case as the region is regular. For a region of any other shape 

there is not one particular distribution that is appropriate. The shape of the distribution of 

angles must be calculated from each point on the boundary. This is not necessary in many 

cases (such as the rectangular region) since we can generate the random variable from the 

total area and then either integrate or geometrically calculate the area required to meet 

this random variable. This method does not require a calculation of the distribution from 

which to draw an angle.  

A visual simulation of an implementation of this algorithm in a Java applet may 

be found at http://diana.or.nps.navy.mil/~ajdickie/marss/distribution. Also on this site are 

examples of a number of strategies that do not produce uniform coverage of the region.  
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CONCLUSION 

A simple algorithm is presented to generate a movement strategy that ensures a 

mover’s location is uniformly distributed over an area. The algorithm generates 

waypoints by generating a uniform random variable and then finding a point such that the 

area of a wedge is equal to the generated variable.  
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